
BIG DATA MINING AND ANALYTICS
ISSN222096-0654 l l06 /06 l lpp58–71
Volume 2, Number 1, March 2019
DOI: 10.26599/BDMA.2018.9020030

Auxo: A Temporal Graph Management System

Wentao Han�, Kaiwei Li, Shimin Chen, and Wenguang Chen

Abstract: As real-world graphs are often evolving over time, interest in analyzing the temporal behavior of graphs

has grown. Herein, we propose Auxo, a novel temporal graph management system to support temporal graph

analysis. It supports both efficient global and local queries with low space overhead. Auxo organizes temporal graph

data in spatio-temporal chunks. A chunk spans a particular time interval and covers a set of vertices in a graph.

We propose chunk layout and chunk splitting designs to achieve the desired efficiency and the abovementioned

goals. First, by carefully choosing the time split policy, Auxo achieves linear complexity in both space usage

and query time. Second, graph splitting further improves the worst-case query time, and reduces the performance

variance introduced by splitting operations. Third, Auxo optimizes the data layout inside chunks, thereby significantly

improving the performance of traverse-based graph queries. Experimental evaluation showed that Auxo achieved

2:9� to 12:1� improvement for global queries, and 1:7� to 2:7� improvement for local queries, as compared with

state-of-the-art open-source solutions.

Key words: graphs and networks; temporal databases; composite structures

1 Introduction

Graphs are an important data model for representing
complex relationships in big data applications.
Representative real-world graph applications include
the Web, social networks, road networks, and semantic
networks. As real-world graphs are often evolving over
time, interest in the temporal behavior of graphs has
increased. Temporal graph analysis usually accesses
a series of snapshots of a graph over time, and then
either performs iterative computation over the full
snapshots or visits individual vertices. Recent studies

�Wentao Han, Kaiwei Li, and Wenguang Chen are with
Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China. E-mail:
hanwentao@tsinghua.edu.cn; lkw17@mails.tsinghua.edu.cn;
cwg@tsinghua.edu.cn.
� Shimin Chen is with Institute of Computing Technology,

Chinese Academy of Sciences, Beijing 100190, China. E-mail:
chensm@ict.ac.cn.
�To whom correspondence should be addressed.

Manuscript received: 2018-05-08; accepted: 2018-05-27

analyzed the evolution of the ranks of web pages[1],
investigated the impact of user activities on social
relationships in social networks[2], and characterized
the changes of graph diameters in social networks[3].
Temporal graph analysis is becoming an increasingly
significant approach in enhancing static graph analysis
and revealing the dynamic time-evolving properties of
graphs.

A system to support graph analysis comprises a graph
computation engine and a graph management system.
Temporal graph analysis requires re-designing both
components. For computation engines, recent work
has proposed Chronos, an in-memory temporal graph
engine[4] that exploits locality-aware batch scheduling
to speed up the computation of each vertex across
multiple graph snapshots. In this study, we focus on
designing a temporal graph management system that
efficiently handles the storage and retrieval of evolving
graph structures.

Previous work on DeltaGraph proposed a tree-like
structure to store an evolving graph[5]. Conceptually,
the leaf nodes of the tree represent equi-spaced

Wentao Han et al.: Auxo: A Temporal Graph Management System 59

historical snapshots of the graph. A non-leaf node
represents a particular intermediate state (e.g.,
intersection) of all its child nodes. Interestingly,
DeltaGraph does not actually store the nodes. Instead,
it stores data for each edge in the tree, which contains
a set of update events in the evolving graph and
represents the delta (i.e., set difference) between the
two tree nodes connected by the tree edge. To obtain a
graph snapshot, DeltaGraph computes a path from the
root to the snapshot, and merges all the tree edge deltas
along that path.

However, DeltaGraph has the following main
limitations. First, DeltaGraph may incur significant
overhead for retrieving graph snapshots. The query time
is proportional to the total number of update events
regardless of the specific time points of the snapshot
to be queried. This means that accessing an early
snapshot A of a graph would incur similar cost as
compared to accessing a recent snapshot B of the
graph, even if A is much smaller than B . Second,
to retrieve information of a vertex, DeltaGraph has
to combine the data from multiple edges, incurring a
significant number of random I/Os. Third, DeltaGraph
requires the computation of the difference function at
the non-leaf nodes for incoming update events, which
may incur non-trivial overhead. Finally, DeltaGraph
does not target graph specific features. For example, it
does not consider neighborhood relationships, which is
important for friend-of-friend queries (also knwon as
“2-hop queries”).

In this study, we propose Auxo, a novel temporal
graph management system that divides and manages
temporal graph data in spatio-temporal chunks (Auxo
is the goddess of growth in the Greek mythology.). A
chunk spans across a time interval and covers a set
of vertices in the graph. By judiciously choosing
the time points to split the data, for naturally
growing graphs, Auxo can achieve both provably linear
space complexity for storing temporal graph data and
provably linear time complexity for global snapshot
queries. By splitting the data in the vertex dimension,
Auxo can improve the worst-case query performance
and reduce performance variance caused by chunk
splitting operations. Auxo employs a neighborhood-
aware vertex layout in the chunks to further improve the
performance of 2-hop queries. Experimental evaluation
has demonstrated that Auxo achieves 2:9� to 12:1�
improvements for global queries, and 1:7� to 2:7�

improvements for local queries, as compared with state-
of-the-art open-source solutions.

The contributions of this article are three-fold.
First, we propose Auxo as a novel temporal graph
management system that exploits spatio-temporal
chunks to efficiently store and retrieve temporal graph
data. Second, we study and analyze the use of spatio-
temporal chunks as a key technique for temporal graph
management. We propose an adaptive exponential
split technique and employ a neighborhood-aware
vertex layout to achieve efficient queries and space
usage. Third, we present a real-machine performance
study that compares Auxo with multiple state-of-
the-art solutions, using representative graph stores,
relational databases, key-value stores, and the most
recent temporal graph storage solution.

The remainder of this article is organized as follows.
Section 2 forms the discussion by describing the
temporal graph model and the programming interface.
Then Section 3 presents the design of Auxo, and
Section 4 analyzes spatio-temporal chunks. After that,
Section 5 empirically evaluates Auxo. Section 6
discusses related work. Finally, Section 7 presents the
conlusion of this study.

2 Temporal Graph

We start our discussion by describing the model and
the programming interface of temporal graphs in this
article.

2.1 Model of temporal graph

A static graph G D .V;E; P / comprises a set V of
vertices, a set E of edges, and a set P of properties.
Without loss of generality, we consider only directed
graphs, where each element e 2 E is an ordered pair
.u; v/. Note that an undirected graph can be represented
by replacing every undirected edge with two directed
edges. A property p D .x; key; value/ specifies a key-
value pair for a vertex or an edge as identified by x.

A temporal graph is a series of graph snapshots,
G D hG0; G1; G2; : : : ; Gt ; : : :i;

where Gt D .Vt ; Et ; Pt / is the snapshot static graph
of G at time point t , assuming that time is discrete and
starts at 0. This is called the snapshot representation of
a temporal graph.

When a vertex v is added to G at time ta, it is
assigned an id. This id uniquely identifies v during its
lifetime and even after its removal. The id will never be
reused. Suppose v is removed at time tr, then v is alive

60 Big Data Mining and Analytics, March 2019, 2(1): 58-71

during the time interval Œta; tr/. That is, v 2 Vt , where
ta 6 t < tr. This definition follows the transaction time
model of temporal records in Ref. [6]. Similarly, an
edge is uniquely identified with an id and is alive during
an interval (Unique edge ids are capable of representing
multiple edges from u to v.). We use a specific bit in an
id to distinguish a vertex from an edge. A property is
alive from the set operation of the property till the next
set or removal operation of the same key for the same
id.

A temporal graph can also be defined as a sequence
of events:

G D hev1; ev2; ev3; : : :i;

where evi .i D 1; : : :/ are events in the following
categories:
� .AV; v; t/: addition of a vertex, where v is the id

of the vertex to add and t is the time of this event;
� .RV; v; t/: removal of a vertex v at time t ;
� .AE; e; u; v; t/: addition of an edge, where e is the

id of the edge to add, u (v) is the source (target) vertex
id of e, and t is the time of this event;
� .RE; e; t/: removal of an edge e at time t ;
� .SP; x; key; value; t /: set of a property of a vertex

or an edge as identified by x, where key and value are
the key and the associated value to be set, and t is the
time of this event;
� .RP; x; key; t /: removal of x’s property key at time

t .
This is called the event representation of a temporal

graph.
Figure 1 shows an example of a temporal graph.

There are 5 snapshots in this example. The first snapshot
G0 is empty. The events are listed below every snapshot.

Every event of a temporal graph is associated with
an object. The object is a vertex, an edge, or a property
of a vertex or an edge. So every event is associated
with a vertex. For a vertex event, the vertex itself is
the associated vertex of the event. For an edge event,
the associated vertex is the source vertex. And for a
property event, the associated vertex is the vertex or the

G0"

v0"
v1"

v0"
v1"

v2"

v0"
v1"

v2"

G1" G2" G3" G4"

(AV,"v0,"1)"
(AV,"v1,"1)"

(AV,"v2,"2)"
(AE,"e0,"v1,"v0,"2)"

(AE,"e1,"v0,"v1,"3)"
(AE,"e2,"v2,"v0,"3)"

(RE,"e1,"4)"

v0"
v1"

v2"

e0" e0" e0"e1"e2" e2"

Fig. 1 The evolution of a sample social network.

source vertex of the edge, depending on the owner of
the property.

2.2 Query types

Auxo supports both global queries and local queries:
� Global queries: Very common in temporal graph

computation[4, 7], a global query visits all the vertices
and edges in the snapshot at a given time t .
� Local queries: A local query visits a vertex v’s

edges, and/or its neighbors at a given time t . Only
vertices or edges that are alive at time t will be returned
by the queries. More complex temporal graph queries
can be constructed using local queries.

3 System Design

We present the design of Auxo in this section. After
discussing the design goals and challenges, we describe
the main technique and the storage layout of our design
in detail.

3.1 Design goals and challenges

We consider the following three goals in the design of
Auxo:
� Efficient global queries: A global query reads all

the data for a specified snapshot of the graph. A good
design will perform sequential I/Os. Reducing the I/O
size requires to store the relevant data of a snapshot as
close on disk as possible and to reduce the interleaving
of irrelevant data and relevant data.
� Efficient local queries: A good design will reduce

the number of random I/Os for local queries. For the
popular 2-hop queries, it would be nice to place the
vertices in a way so that neighbors are more likely to
be found on the same disk page.
� Low space overhead: The same data (or events)

may be stored multiple times in order to improve query
performance. However, a good design should bound the
space overhead. While the cost of disk space may be
less of a concern today, smaller disk footprints will
lead to better query performance when main memory
cache is used. This is because larger fractions of the
data on disk can be cached given the same memory
size. Moreover, lower space overhead also means lower
amount of data to generate and write to disk, and thus
lower overhead for writing data.

Let us consider two naı̈ve extreme cases (as
discussed by Salzberg and Tsotras[6]) to understand the
challenges. The copy approach stores the snapshot
at every time point. It is optimal for global and local

Wentao Han et al.: Auxo: A Temporal Graph Management System 61

queries. However, since only a very small portion of
the graph is usually updated at every time point, the
snapshots are highly redundant, incurring intractable
space overhead. In comparison, the log approach stores
every event just once in the time order. It minimizes
space overhead. But global queries have to read the
entire log up to the query time point, and local queries
will need to perform a random I/O for each event
relevant to the given vertex. In general, one can combine
copy and log into a hybrid approach. However, how to
find a sweet spot in the design space to achieve the three
design goals for temporal graphs remains a significant
challenge, which we aim to address.

3.2 Spatio-temporal chunks

We propose to store temporal graph data in basic logic
units, called spatio-temporal chunks (referred to as
chunks for short). A chunk is a region in the structure-
time plane, spanning a time interval and covering a set
of vertices. Formally, a chunk C D .Vc ; Œsc ; tc//, where
Vc is a set of vertices and Œsc ; tc/ is a time interval. For
example, as shown in Fig. 2, Chunk C1 covers all the
events that are associated with v 2 V1, and are alive in
the time interval Œs1; t1/. In this way, a temporal graph
can be represented by a number of disjoint chunks, the
union of which covers the entire history and all the
vertices in the graph.

As shown in Fig. 2, there are two types of chunks.
If tc < now, the chunk is sealed. A sealed chunk
cannot be modified. In comparison, new events will
be appended to the chunks on the rightmost side of
the plane, where tc D now. These chunks are called
unsealed chunks. The top-most unsealed chunk is
special (e.g., U4 in Fig. 2). Events on new vertices will
be appended only to this special chunk. The vertex set
of any other chunk remains unchanged. The process of

V%

t%

C0"
C1"

C2"

C3"

C4"

U0"

U1"

U2"

U3"

U4"

s1" t1"

V1"

Fig. 2 Chunks tile to cover the entire temporal graph.

turning an unsealed chunk into a sealed chunk is called
sealing. When sealing a chunk, we have the opportunity
to optimize the data organization in the chunk for better
time and space cost.

3.3 System overview

Figure 3 illustrates a complete temporal graph
processing system. At the core is a Temporal Graph
Management System (TGMS). TGMS organizes
the temporal graph data and supports the temporal
graph operations, including vertex/edge/property
addition/removal, and global and local temporal
queries.

The figure also depicts two other components.
Ingester retrieves events from the outside and deals
with out-of-order events by buffering and sorting
the events. It delivers the events to TGMS in non-
decreasing time order. Query Engine communicates
with users and parses user queries. It executes temporal
queries by invoking methods in the temporal graph
interface provided by TGMS.

In this article, we focus on the design of a TGMS—
Auxo. Auxo organizes temporal graph data in spatio-
temporal chunks, and maintains the metadata of all the
chunks. In the following, we describe (a) how to lay out
data in chunks and how to answer queries (Section 3.4),
(b) how to create new chunks (Section 3.5), and (c)
when to create new chunks (Section 4).

3.4 Storage layout

Recall that sealed chunks are immutable and unsealed
chunks are appendable. We propose different storage
layouts for sealed vs. unsealed chunks. Moreover,
we introduce a global index for quickly locating the
information of a vertex at a specified time point.

Temporal"Graph"Management"System"

Ingester" Query"Engine"

…" …"

Chunk" Chunk" …"

Chunk" Chunk" Chunk" Chunk" …"

Unsealed"

Sealed"

Event" Event" Query" Query"

Fig. 3 The overview of a temporal graph processing system.

62 Big Data Mining and Analytics, March 2019, 2(1): 58-71

3.4.1 Sealed chunk layout
A sealed chunk C D .Vc ; Œsc ; tc// (tc < now) covers
(1) the events relevant to Vc that are alive at sc , which
are actually the snapshot of Vc at sc and (2) the relevant
events that occur during Œsc ; tc/, which are essentially
the log during time interval Œsc ; tc/.

Figure 4 shows the data layout of a sealed chunk. It
consists of vertex segments and a chunk index. A vertex
segment consists of the events of a vertex v, followed by
the events of v’s out-edges. We use 64-bit integers for
all fields unless otherwise noted.
� Vertex/edge id: The three most significant bits of

the unique id are reserved, indicating whether the event
is for a vertex or an edge, whether it is an addition or
a removal, whether it is about an entity (i.e., a graph
structural change on the vertex or the edge itself) or
about a property. Moreover, an edge id contains its
source vertex id as prefix.
� Time: the UNIX time in milliseconds when the

event occurs.
� Target id (optional): the target vertex id of an

added edge.
� Data (optional): 32-bit key size, 32-bit value size,

a key, and a value that describe the property. The key
and the value are variable sized byte arrays padded to
multiples of 8 bytes.

A sealed chunk C D .Vc ; Œsc ; tc// will be used in
queries involving any vertices in Vc and time point
within Œsc ; tc/.

For a global query at time t 2 Œsc ; tc/, the entire
chunk is scanned sequentially. It skips any event whose
time is greater than t . Moreover, for a vertex, an edge,
or a property, the algorithm emits only the last event
whose time is less than or equal to t because earlier
events are overridden by the last one. Furthermore, if

Vertex&0&
events&

Edge&00&
events&

Edge&01&
events& …&

Vertex&0&segment&

Vertex&1&
segment&

Edge&02&
events&

Vertex&2&
segment& …&

&Vertex&id& Time& Data*&

Flags:&Vertex/Edge,&Add/Remove,&EnMty/Property&

…& &Edge&id& Time& Data*& …&Target&id*&

Key&
size&

Value
size& Key& Value*&

Offset& …&Vertex&id&Chunk&index&

Index&entry&

Fig. 4 Layout of a sealed chunk. Fields with asterisks are
optional.

the last event is a removal event, nothing will be emitted
because the object is removed as of t .

If a local query for a vertex v at time t belongs to
C , we know that all the relevant data are contained in a
single vertex segment in the chunk. Therefore, a local
query requires only a single random I/O to access the
vertex segment (besides the I/Os to search the global
index, as will be detailed in Section 3.4.3). Our sealed
chunk layout minimizes the I/O cost for local queries.

3.4.2 Unsealed chunk layout
An unsealed chunk U logically contains events of a
vertex set Vu that are either alive at time su or happen
at or after time su. Figure 5 shows the data layout of
an unsealed chunk. We employ a design similar to the
SSTable in Bigtable[8], which is a variant of the Log-
Structured Merge-Tree[9]. First, we store a snapshot at
su for U using the same data layout as the sealed chunk.
Note that the special unsealed chunk that accepts new
vertices does not store the snapshot since there is no
event at the beginning. Second, new events are inserted
into an in-memory event table, as well as appended to
a log buffer on disk. Third, when the in-memory table
grows to a threshold, Auxo persists it to disk as a log
piece. The log piece also employs the layout of a sealed
chunk. Finally, when there exist k log pieces of the
same size, they are merged into a new (level-2) larger
piece. Once the level-2 piece is written, the original k
pieces are discarded. Similarly, if there exist k level-j
pieces, they are merged into a level-(j C 1) piece. This
merge operation is done by k-way merge.

For a query at time t on U , we need to visit the
snapshot, the log pieces that overlap Œsu; t �, and the
in-memory table if it contains events that occur in
Œsu; t �. For a global query, we also use a merging
algorithm to compute the snapshot. For a local query,
we get the offsets of vertex segments in all the relevant
components (snapshot, log pieces, and/or in-memory
table), and then merge these vertex segments to obtain
the result.

Snapshot& Log&Piece&1& Log&Piece&2&

Log&Buffer&

Log&
Piece&3&

Log&
Piece&m"

…&

Memory&

Disk&

Fig. 5 The physical layout of an unsealed chunk. The log
buffer (in gray) has no index.

Wentao Han et al.: Auxo: A Temporal Graph Management System 63

From this discussion, it is easy to see the benefits
of the log piece merging approach. First, it limits the
number of log pieces to be merged for a global query.
Second, a local query potentially needs to perform an
I/O for each log piece to collect the relevant vertex
segments. Reducing the number of log pieces reduces
the number of random I/Os.

3.4.3 Global index
We design a global index to quickly locate data for
local queries. Given a vertex v and time t , the global
index finds which chunk and at what position inside the
chunk the relevant vertex segment is stored. Figure 6
shows the global index structure, which is similar to
the structure of chunks. Each entry in the global index
consists of a vertex id, the time when the chunk is
generated, a chunk id, and an offset in the chunk.
When an unsealed chunk is sealed, entries for the newly
generated sealed chunk are inserted, and entries for the
unsealed chunk are removed. There can be multiple
sealed global indexes, and an unsealed global index.
The unsealed global index will be sealed when there
are too many entries with the same vertex id. For each
vertex, the last index entry in the unsealed global index
always refers to an unsealed chunk.

3.5 Chunk splitting

As new events continue to arrive, the size of an unsealed
chunk becomes larger and larger. In order to organize
data in units of tractable sizes and achieve good space
and time efficiency, we will split unsealed chunks.
Conceptually, our splitting mechanisms are similar to
the time-split and the key-split operations in TSB-
tree[10]. However, a TSB-tree organizes data into pages
with keys sorted in a page. In contrast, Auxo organizes
events in chunks, whose size may vary. There is no clear
order of vertices in a graph.

For a temporal graph, we design two types of split

Vertex&id& Chunk&id& Offset&Time&A&global&index&entry&

v1,&t1& v1,&t2&…& …&Global&index&

Vertex&segment&for&v1& …&…&Chunk&a"

Vertex&segment&for&v1& …&…&Chunk&b"

Fig. 6 The global index.

operations: time split and graph split. A time split
operation splits an unsealed chunk into a sealed chunk
and another unsealed chunk that covers the same vertex
set, e.g., C2 and U3 in Fig. 2. A graph split operation
splits a chunk into two. For simplicity, Auxo performs
graph split only when doing time split. A time+graph
split operation will turn an unsealed chunk into a sealed
chunk and two unsealed chunks, e.g., C3, U0, and U1 in
Fig. 2.

3.5.1 Time split
When an unsealed chunk grows too large, it will
become inefficient for temporal queries. First, for a
global query, it is possible that a lot of early events
have already been updated by some later events, and
will not appear in the result of the query. These events
are irrelevant but still need to be scanned, which makes
the query less efficient. Second, a local query needs
to perform a random I/O for the snapshot, and a
random I/O for every relevant log piece that overlaps
the query’s time point as described previously, incurring
significantly more random I/Os than a sealed chunk.
The number of random I/Os increases as the size of the
unsealed chunk increases.

We perform time split to tackle this issue. When
doing a time split on an unsealed chunk U , the split
is always at the current time point. Let t be the current
time at the start of the time split. That is, the operation
sealsU into a sealed chunkC , and starts a new unsealed
chunk U 0. For sealing U , we merge U ’s snapshot,
all log pieces, and the in-memory table. For the new
unsealed chunk U 0, all the events that are not alive at t
are removed. This often significantly reduces the size
of the unsealed chunk. We obtain a snapshot of U at
t using a global query, and store the snapshot for U 0.
From now on, new events will be written to U 0.

To avoid the interference between a time split and
new events that arrive during the split, new events
are appended into a new log piece (which belongs to
U 0). When the system finishes creating C and U 0,
it must atomically switch U to C and U 0. During
the transition, the global index is locked. New index
entries representing the addition and removal of vertex
segments are inserted. Now the global index points to
the new sealed chunk C or the new content of the
unsealed chunk U 0, and the old content of U can be
discarded. After the time split action, queries at an
earlier time than t will be executed on chunk C . Now
chunk C does not contain any events that happen at or

64 Big Data Mining and Analytics, March 2019, 2(1): 58-71

after time t . And queries at a more recent time will
be executed on the new unsealed chunk U 0, in which
the events not alive after t have already been removed.
Hence, by doing time split actions, we improve the
performance of query operations.

The time points at which time split actions should be
taken are very important to the performance. We will
discuss how to decide the split points in Section 4.1.

3.5.2 Graph split
Only doing time split on temporal graphs is not enough
for real applications. Take a growing-only temporal
graph G as an example, that is, new vertices and
edges are constantly added to the graph, but no one is
removed. The snapshot size becomes larger and larger
when G evolves, so do the chunks sealed. It will take a
long time to seal a big chunk, and if we can not control
the time cost for a single sealing operation, the whole
system will suffer a burst at times.

To solve this problem, we also split the graph
structure. For example, when the snapshot Gt D

.Vt ; Et / reaches a size threshold, we can split Vt into
two disjoint sets V1 and V2. Then, all the events
associated with vertices in V1 can be organized in one
chunk, while all the events associated with vertices
in V2 in another. Once the graph is split, each new
chunk is growing by itself. Now the cost of split is
controlled under a threshold, and amortized over the
entire growing process.

To simplify the design, we only do graph split when
doing time split. When doing time split, we further
check whether the size of the new unsealed chunk to
generate is greater than the chunk size threshold. If so,
two unsealed chunks will be generated instead of one,
each contains about half of the events.

When doing graph split, we actually partition the
graph into two parts by vertices. To optimize graph
traversal queries, we want neighboring vertices to be
placed in the same chunk as many as possible. Mature
graph partitioning algorithms like METIS[11] are used
here, since they fulfill our requirement well.

3.5.3 Graph rearrangement
For graph data, traversal is a common pattern of queries.
In traversal queries, the data of a vertex is visited,
followed by the visit of its edges and neighbors. Take
2-hop neighborhood query as an example. In such a
query, we are given a vertex v�, and want to visit its
neighbors as well as the neighbors of its neighbors.

Our design of time split and graph split creates a good

opportunity to improve the data locality after the data
have already been stored in the system for traverse-
based queries. The graph data are eventually stored
on disk, organized in blocks. As Fig. 7 shown, for
an identical graph structure, different orders of vertices
may result in different numbers of blocks to visit. To
traverse v4 in this extracted subgraph, suppose just the
data of v4, v1, and v9 need to be visited. Then, for
Order 1, the data of these 3 vertices are placed together
and in a single disk block, so only one block is needed.
For Order 2, the data of these 3 vertices are placed
separately in 3 different blocks, so we must visit 3
blocks for the same query. This will cause different
performance for queries.

When generating sealed chunks, we can rearrange the
order of vertices on the disk to improve the locality for
traversal queries. For graph traversal queries like 2-hop
neighborhood, we want the data of adjacent vertices to
be placed in consecutive storage addresses. It is an NP-
hard problem to compute the optimal order of a graph in
a line[12]. We can use low-time cost heuristic approach
like BFS to achieve a relative good result.

Since we have an index table for vertices in a sealed
chunk, what is needed for rearrangement is computing
merely a vertex order mapping, describing which vertex
should be placed at which position, and then generating
the sealed chunk in this order.

4 Choosing Policy

The design of spatio-temporal chunks minimizes the
number of random disk accesses for local queries. In
this section, we analyze the time cost for global queries
and the space cost of our design in order to guide Auxo
to choose time split and graph split policies.

4.1 Time split policy

For simplicity, we assume an ideal case where the graph
is growing constantly and uniformly, and the size of
events is the same (and is normalized to 1). Let a be
the rate of addition events, r be the rate of removal
events, and u be the rate of update events. If we use

v4"
v1"

v9"

…" …"

A"block"

Order"1"

…" …"

A"block"

Order"2" …"…"

A"block" A"block"

v4" v1" v9"

v4" v9"v1"

Fig. 7 Two different layouts of a subgraph.

Wentao Han et al.: Auxo: A Temporal Graph Management System 65

the event order number as time, then a C u C r D 1.
Let ˛ D a � r be the net growing rate. Since the graph
is growing, ˛ > 0. Let ˇ be the size of the snapshot at
the very beginning. Thus, at time � , the total number of
new events is � , and the total number of live events is
ˇ C ˛� .

Let �n be the time when the n-th time split is taken
(�0 D 0). The chunk consists of the live events at time
�n�1 and all the events between �n�1 and �n. Therefore,
the chunk contains .ˇ C ˛�n�1/C .�n � �n�1/ events.

We define two factors to measure the space and time
overhead of the design. The space factor SFn at the n-
th time split is defined as the space taken by all the
chunks divided by the space of all events (excluding the
snapshot of size ˇ at the beginning):

SFn D

Pn
kD1 Œ.ˇ C ˛�k�1/C .�k � �k�1/�

�n

D

1C
nˇ C ˛

Pn
kD1 �k�1

�n

:

It is necessary to store all the events to support
temporal queries. Therefore, SFn D 1 is the best
possible case with no space overhead. Space overhead
arises because an event may be stored in multiple
chunks. Since the total chunk size corresponds to the
I/O cost for generating time splits, SFn also reflects the
overhead of the time split operations.

The time factor TFn of the n-th chunk is defined as
the size of the n-th chunk divided by the size of the total
live events at �n�1:

TFn D
.ˇ C ˛�n�1/C .�n � �n�1/

ˇ C ˛�n�1

D

1C
�n � �n�1

ˇ C ˛�n�1

:

The global query at time � 2 .�n�1; �n� is answered
by reading the n-th chunk, whose size is the numerator
in TFn. However, the best possible time to answer such
a query is to read only the live events, whose size is
ˇC ˛� . This is lower bounded by ˇC ˛�n�1, which is
the denominator of TFn. Therefore, TFn represents the

worst-case time overhead for a global query.
Table 1 shows the space and time factors by setting

the split time �k to be a polynomial or an exponential
function of k. From the analysis, we see that there is
a trade-off between space and time overheads. Smaller
TFn often means larger SFn.

When ˛ > 0, for the polynomial functions, TFn goes
to 1 for sufficiently long time, but SFn is not bounded
by a constant. On the other hand, the exponential
functions lead to constant SFn and TFn asymptotically.
In particular, when b D 1 C ˛, SFn and TFn both
become 2. Therefore, exponential time splits achieve
more balanced space and time overheads.

When ˛ D 0, exponential time split is a poor choice.
It will lead to larger and larger chunks, while the total
number of live events remains constant. TFn will grow
to infinity. In contrast, the linear split policy with � D
ˇ achieves constant space and time factors; both SFn

and TFn are 2.
Combining the analysis in the above two cases, we

propose the Adaptive Exponential Split policy. Suppose
SU is the size of the last snapshot, and LU is the size of
the current log in an unsealed chunk U . We perform a

time split when
LU

SU

> � and LU > , where � is the

base parameter, and is the split threshold. For the ideal

constantly growing case, � D
b � 1

˛
. � tunes the space-

time trade-off. This policy is able to achieve constant
space and time factors for both ˛ > 0 and ˛ D 0 cases.

We compare our solution to DeltaGraph[5]. Note that
while the DeltaGraph paper considers the Copy+Log
approach, it has not studied the exponential split policy.
First, DeltaGraph with the Balanced function requires
O.N logN/ space, where N is the total number
of events till now (Here N is equivalent to jEj in
DeltaGraph’s notation.). In comparison, our solution
achieves O.N/ space complexity, which significantly
reduces the space overhead. Second, for retrieving
a graph snapshot, DeltaGraph’s time cost is O.N/

Table 1 Space and time factors of different time split policies. N=���n stands for total number of events. ��� is a constant controlling
the time split behavior.

�k SFn SFn; N !C1 Total space TFn TFn; N !C1

k� 1C ˇ
�
C ˛ n�1

2
˛
2
N
�

O.N 2/ 1C 1
ˇ=�C˛.n�1/

1

k2� 1C ˇ
n�
C ˛

�
n
3
�
1
2
C

1
6n

�
˛
3

q
N
�

O.N
3
2 / 1C 2n�1

ˇ=�C˛.n�1/2
1

kp�, p 2 Z, p � 1 1C ˇ

np�1�
C ˛

�
n
pC1

C � � �

�
˛
pC1

p

q
N
�

O.N
pC1
p / 1C pnp�1C���

ˇ=�C˛.n�1/p
1

2k� 1C nˇ
2n�
C ˛ 2

n�1
2n

1C ˛ O.N/ 1C 1

ˇ=.2n�1�/C˛
1C 1

˛

bk�, b > 1 1C nˇ
bn�
C

˛
b�1

bn�1
bn

1C ˛
b�1

O.N/ 1C b�1

ˇ=.bn�1�/C˛
1C b�1

˛

66 Big Data Mining and Analytics, March 2019, 2(1): 58-71

regardless of the specific time points of the snapshot to
be queried. In contrast, our solution achieves the time
complexity of O.m/ for a global query, where m is the
number of live events at the query time. Note that for a
normal growing graph, if the query time point is small,
it is often the case thatm� N . Therefore, our solution
can significantly reduce the time overhead.

4.2 Graph split policy

If the graph is split into multiple partitions, all partitions
will grow independently. If we choose different
parameters to arrange the partitions to have the peak
time factors at different times, the overall worst-case
time factor can be further reduced.

We consider the case with b D 2 and ˛ D 1 for the
ideal constantly growing graph. Without graph splits,
both SFn and TFn are 2. Now suppose the graph is split
into 2 partitions. Partition 1 takes k-th time split at � D
2k , and Partition 2 at � D 2kC , where C 2 .1; 2/. It is
easy to see that the worst-case time factor of the whole
graph is reached either at 2k or at 2kC .

TF0 D
2kC1 C 2kC

2 � 2k
D 1C

C

2
; at 2k

I

TF00 D
2kC1 C 2kC1C

2 � 2kC
D 1C

1

C
; at 2kC :

The overall worst-case time factor will be
maxfTF0;TF00g. This is minimized when TF0 D TF00,
i.e., C D

p
2. In this case, the overall time factor is

1:707, which is better than TFn D 2 for the graph
growing as a whole.

Similarly, if the graph is split into w partitions,
the optimal worst-case time factor is achieved
when Partition i (1 6 i 6 w) performs time splits at
2k2i=w . In this case, the worst-case time factor is

1

.1 � 2�1=w/w
. This value decreases when w increases,

and has a limit of
1

ln 2
D 1:443. In fact, when w D 10,

this value has already dropped below 1:5.
In general, for an ideal constantly growing graph with

the base parameter b > 1 and the growing rate ˛ > 0,
we can split the graph into multiple graph partitions to
reduce the worst-case time factor. The optimal worst-

case time factor approaches
.b � 1/.˛ C b � 1/

˛b ln b
. The

proof is absent due to space constraints.

5 Evaluation

5.1 Experimental setup

Machine Configuration. We run all our experiments

on a machine equipped with a 3.4 GHz Intel Core
i7-4770 CPU, 32 GB main memory, and a Seagate
7200RPM disk drive, running Ubuntu 14.10. Table 2
lists the detailed configuration.

Solutions to compare. We compare five solutions:
� Auxo is our proposed solution. We implemented

Auxo in C++. Chunks are stored in files on the local
disk.
� DeltaGraph[5] uses a tree-like structure to store an

evolving graph. We implemented a simplified version
of DeltaGraph by modifying and reusing Auxo code. It
supports only the Balanced differential function, which
is recommended as the preferred function in Ref. [5].
� Neo4j[13] is a state-of-the-art graph database.

In Neo4j, data are organized by nodes, as well
as relationships between nodes. Both nodes and
relationships can have properties. We store the addition
and removal timestamps of vertices and edges in
a temporal graph using properties in Neo4j. We
implemented queries with Neo4j’s Java API.
� PostgreSQL[14] is an open-source relational

database system with support for temporal features. We
store vertices and edges in a vertex table and an edge
table, respectively. We build temporal indices using the
temporal extension. The queries are implemented in
SQL statements.
� HBase[15] is a popular key-value data store with

support for multi-versioning and range scans. We store
vertices and edges as rows in an HBase table, and record
addition and removal events using different versions
(i.e., timestamps). We implemented temporal queries
using HBase’s Java API by specifying time ranges.

Data Sets. We use two temporal graph data sets
from KONECT[16], as listed in Table 3. wiki-fr is a
temporal graph for French articles in Wikipedia. Each

Table 2 Hardware and software configuration used.

Item Configuration/Version

Processor Intel Core i7-4770 3.40 GHz (4 cores)
Memory 32 GB

Disk Seagate 3 TB 7200RPM (64 MB cache)

OS Ubuntu 14.10
Kernel Linux 3.16.0-28-generic
C++ LLVM/Clang 3.5.0
Java OpenJDK 1.7.0 75

Neo4j 2.1.6
PostgreSQL 9.4

HBase 1.0.0

Wentao Han et al.: Auxo: A Temporal Graph Management System 67

Table 3 Statistics of the temporal graphs used. (�106)

Graph
Number

of vertices
Number
of edges

Number
of events

wiki-fr 2:21 24:4 61:2

dblp 1:31 38:0 39:3

vertex is an article, and edges represent references. dblp
is a co-authorship graph. Each vertex is an author.
If two authors co-authored a paper, then there is an
edge between the two corresponding vertices. Since
it is an undirected graph, we use two directed edges
to represent each undirected edge. Our data sets are
comparable to the largest synthetic data set and are
about 10 times larger than the real-world data set in
previous work[5].

Measurement. For each experiment, we perform 5
runs, and report the average execution time. Before
each run, the page cache of the operating system is
cleaned. We model two situations: (i) no cache and (ii)
cache. For the latter, main memory is available to cache
graph data. For the former, we ran another program that
allocates and locks most of the free memory, leaving
only a few megabytes to the temporal graph solutions.

5.2 Evaluation of Auxo

Time-Split Policy. Time-split policies affect the
storage usage and the performance of queries. We
generate chunks using different time-split policies and
parameters, and measure the execution time of global
queries. Graph split is not performed in this experiment.

Figure 8 shows the performance of global queries
on wiki-fr graph with different time split policies. We
conducted 11 global queries at evenly distributed time
points between 2005 and 2010. The figure also shows
the ideal curve, for which we generate snapshots that
contain only the live events at the query time points, and
measure the query performance. Figure 8a shows the
results for exponential split with b D 2, and adaptive

exponential split with � D 1. Figures 8b and 8c show
the execution times under different parameters. Each
bump in the curves corresponds to a time split. The
curves have many flat portions because several global
queries are answered using the same chunk, thus having
similar cost. Note that the time factor is the ratio of the
execution time to that of the ideal case.

In general, smaller b or � results in faster
query execution (while using larger storage overhead).
Interestingly, in Fig. 8b, the curve of b D 3:0 is lower
than the curve of b D 2:0 for global queries at 2008 and
later. The reason is that the last time split of the b D 3:0
curve is very close to the end of the event series in wiki-
fr. If the graph grows infinitely, this anomaly would not
happen.

Figure 8d shows the same policies as in Fig. 8a, while
having enough memory to cache a single chunk. Hence,
if we query several time points in the same chunk, the
execution times of the second and later queries to the
same chunk are drastically reduced.

Figure 9 shows the same experiment for the dblp
graph. Since the co-author relationship is growing only,
the two time-split policies have almost the same effects.

Graph Split. Figure 10 shows the disk write speed
over time with and without graph split mechanism
when importing dblp graph. For graph split, once the
number of new vertices reaches 1 � 105, the special
unsealed chunk is sealed. Compared to the run without
graph split, though the total sizes of chunks on disk
are very close, I/O operations are amortized over time.
Hence, graph split can reduce the I/O burst incurred
by chunk sealing operations, making the system more
predictable.

Graph Rearrangement. Figure 11 shows the effect
of graph rearrangement. Before the experiment, we
generated a list of 1000 random vertices for each graph,
and ran 2-hop neighborhood queries for the same list
of vertices with different approaches of rearrangement.

2005 2006 2007 2008 2009 2010

Query time point

0

2

4

6

8

10

12

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Exp.

Ad. Exp.

Ideal

(a) Two policies

2005 2006 2007 2008 2009 2010

Query time point

0

2

4

6

8

10

12

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

b=1.1

b=1.5

b=2.0

b=3.0

(b) Exponential policy

2005 2006 2007 2008 2009 2010

Query time point

0

2

4

6

8

10

12

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

λ=0.24

λ=1.00

λ=1.21

λ=4.83

(c) Adaptive exp. policy

2005 2006 2007 2008 2009 2010

Query time point

0

2

4

6

8

10

12

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Exp.

Ad. Exp.

Ideal

(d) Two policies, cached

Fig. 8 Global query performance on wiki-fr graph with different time-split policies and parameters.

68 Big Data Mining and Analytics, March 2019, 2(1): 58-71

2000 2002 2004 2006 2008 2010

Query time point

0

1

2

3

4

5

6

7

8

9

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Exp.

Ad. Exp.

Ideal

(a) No cache

2000 2002 2004 2006 2008 2010

Query time point

0

1

2

3

4

5

6

7

8

9

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Exp.

Ad. Exp.

Ideal

(b) Cache

Fig. 9 Global query performance on dblp graph with
different time-split policies.

0 20 40 60 80

Running time (s)

50

100

150

200

250

300

W
ri

te
 s

p
e
e
d
 (

M
B

/s
)

One

Split

Fig. 10 Disk write speed over time with and without graph
split.

For Random, the vertices are shuffled randomly (used as
a baseline). For Original, the vertices are ordered by the
sequence that they were added. For BFS, the vertices in
the chunk are traversed by a breadth-first search, and
rearranged by the BFS traversal order. This heuristic
has low time cost, and can put adjacent vertices in
proximity (Spectral partitioning[17] is another potential
approach to rearranging vertices. We have experimented
spectral partitioning on small graphs, and found that its
computation is very expensive and incurs dramatically
high overhead for chunk splits).

Figure 11a shows the results on wiki-fr graph. For
each group of bars, the average execution time of
Random is normalized to 1. When caching is turned

No cache Cache
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 t

im
e

Random Original BFS

(a) wiki-fr

No cache Cache
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 t

im
e

Random Original BFS

(b) dblp

Fig. 11 Impact of vertex layout on 2-hop neighborhood
queries.

off, BFS achieves 61% improvement over Random,
and 47% improvement over Original. When caching
is turned on, the performances of all three approaches
improve. Before each experiment, we clean the page
cache of the OS. When a vertex is accessed, the entire
disk page containing the vertex data will be cached in
memory. As an experiment proceeds, it is more and
more likely that a request for a vertex will hit in the page
cache. This effect also smoothes the difference across
the three approaches. Nevertheless, BFS still sees 42%
improvement over Random, and 34% improvement over
Original.

Figure 11b shows the same experiment on dblp. We
see similar trends. BFS is the best among the three
approaches. Since the average degree of dblp is smaller
than wiki-fr, the improvement of BFS is smaller.

Multithreading. Multiple threads can concurrently
perform queries in Auxo. Figure 12 shows the speedup
of parallel 2-hop neighborhood queries on wiki-fr.
The experimental machine has 4 CPU cores. When
we increase the number of threads from 1 to 4, we
see a 1.6� improvement in performance. The speedup
mainly comes from concurrent access of data cached in
memory. However, the concurrency is limited by the
IOPS of the single disk in the system.

5.3 Performance comparison with representative
state-of-the-art solutions

Comparison to DeltaGraph. Figure 13 shows the
performance of global queries on dblp using the
Balanced function of DeltaGraph (L D 10 000, k D
2) and the adaptive exponential split policy (� D
1) of Auxo. The data generated by Auxo is 5:4GB,
while DeltaGraph takes 23GB. We see that Auxo
and DeltaGraph achieve similar query performance for
querying relatively late snapshots. On the other hand,
for querying early snapshots, DeltaGraph can be up

1 2 3 4

Number of threads

1.0

1.2

1.4

1.6

1.8

S
p
e
e
d
u
p

Fig. 12 Multithreaded 2-hop neighborhood queries.

Wentao Han et al.: Auxo: A Temporal Graph Management System 69

2000 2002 2004 2006 2008 2010

Query time point

0

1

2

3

4

5

6

7

8

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Auxo

DeltaGraph

Fig. 13 Comparison of Auxo and DeltaGraph (dblp graph).

to 5� as slow as Auxo because DeltaGraph’s query
execution time is proportional to the total number of
events in the system rather than the actual number of
live events at the time of the snapshot.

We also ran 2-hop queries on dblp under the same
settings as for global queries. For 1000 randomly
generated queries, Auxo took 130ms on average, and
DeltaGraph took 425ms on average. In local queries,
DeltaGraph needs to access blocks containing data of
the same vertex across different “edges”, while Auxo
places the data sequentially in one chunk.

Comparison to Neo4j, PostgreSQL, and HBase.
We use default configurations for the three solutions.
HBase is running in single-node mode. For global
queries, 100 queries with random time points are
executed. For 2-hop queries, 1000 queries with random
parameters are executed. Table 4 compares the average
execution times of Auxo, Neo4j, PostgreSQL, and
HBase.

Overall, compared to the three state-of-the-art
solutions, Auxo achieves 2:9� to 12:1� improvement
for global queries and 1:7� to 2:7� improvement for
local queries. For global queries, PostgreSQL is better
than Neo4j and HBase due to its temporal indexing
support. Auxo is much better than the other three
solutions, showing the effectiveness of the spatio-
temporal chunks. For 2-hop queries, we are surprised
to see that HBase is better than PostgreSQL and

Table 4 Query performance of different systems.

System Global (s) 2-hop (ms)

Neo4j 16:0 340

PostgreSQL 6:73 346

HBase 27:9 214

Auxo 2:30 128

Neo4j. Auxo is the best because spatio-temporal chunks
minimize the number of random disk accesses for
local queries and because of the graph rearrangement
optimization.

6 Related Work

Research on temporal graphs is ongoing, and has found
many interesting properties that could not be contained
in a single graph snapshot[18–20]. Much research has
also proposed algorithms that rely on the dynamics of
graphs, and give more profound results[21–23]. Auxo
can potentially support the analysis and algorithms of
temporal graphs.

DeltaGraph[5] proposes a temporal indexing data
structure for temporal graphs, aiming at snapshot
retrieval. As we discussed, our design is different from
DeltaGraph in the organization method of events, and
provides opportunity to optimize graph data locality
to improve traverse-based graph query. The system in
Ref. [24] also tries to optimize temporal and graph data
locality, but it adopts interaction graph model. In this
model, each event happens at a time point, but does not
span for an interval. So techniques for computational
geometry could be employed for this model.

Temporal data access has been studied in relational
data model[6]. Data structures like TSB-tree[10] and HV-
tree[25] have been proposed to optimize data access
for temporal relational databases. ImmortalDB[26, 27]

puts TSB-tree into reality, and adds new techniques
like version compression for saving storage cost
and improving query performance. Our design of
performing time split and graph split on chunks is
inspired by time split and key split in TSB-tree.
However, chunks in Auxo are not aligned with physical
blocks. The adaptive exponential time split policy keeps
both space and time factors as constants. This policy
cannot be applied in TSB-tree due to its fixed page size.
The flexible size of chunks also provides opportunity
for graph layout optimization. Instead of index pages in
the tree, we use a global index for fast vertex lookup.

The recent research on graph engines has provided
vertex- or edge-centric programming models for
iterative graph computation[28–30]. Grace, GraphChi,
and X-Stream accelerate graph computation on a
single machine[31–33]. They all change the graph
layout or the vertex/edge visiting order to reduce
the randomness of access from the irregularity
of graph structures. Kineograph ingests graph data

70 Big Data Mining and Analytics, March 2019, 2(1): 58-71

from outside, and keeps the most recent snapshot
in memory for streaming computation[7]. Chronos
assumes temporal graph data stored persistently,
and computes general graph algorithms on several
snapshots simultaneously[4]. Auxo is complementary to
Chronos and could be used as its data source.

7 Conclusion

In this article, we propose a temporal graph storage and
query system Auxo. It stores temporal graph data in
chunks, and employs an adaptive exponential time-split
policy, which constrains both the space and time factors
within a constant. Moreover, graph split can help further
amortize the time factor, and amortize chunk sealing
overhead. Additionally, graph rearrangement in a chunk
can improve graph data locality, which optimizes
traverse-based queries like 2-hop neighborhood. The
overall design makes Auxo an efficient system for
temporal graphs.

Acknowledgment

This work was supported by the National High-Tech
Development Plan of China (No. 2015AA015306) and
the National Natural Science Foundation of China (No.
61772302).

References

[1] L. Yang, L. Qi, Y. Zhao, B. Gao, and T. Liu, Link analysis
using time series of web graphs, in Proceedings of the
Sixteenth ACM Conference on Information and Knowledge
Management, CIKM 2007, Lisbon, Portugal, 2007, pp.
1011–1014.

[2] C. Wilson, B. Boe, A. Sala, K. P. N. Puttaswamy, and
B. Y. Zhao, User interactions in social networks and
their implications, in Proceedings of the 2009 EuroSys
Conference, Nuremberg, Germany, 2009, pp. 205–218.

[3] J. Leskovec, J. M. Kleinberg, and C. Faloutsos, Graphs
over time: Densification laws, shrinking diameters and
possible explanations, in Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Chicago, IL, USA, 2005, pp.
177–187.

[4] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou,
V. Prabhakaran, W. Chen, and E. Chen, Chronos: A
graph engine for temporal graph analysis, in Proceedings
of the Ninth European Conference on Computer Systems
EuroSys’14, New York, NY, USA, 2014, pp. 1:1–1:14.

[5] U. Khurana and A. Deshpande, Efficient snapshot retrieval
over historical graph data, in Data Engineering (ICDE),
2013 IEEE 29th International Conference on, 2013, pp.
997–1008.

[6] B. Salzberg and V. J. Tsotras, Comparison of access
methods for time-evolving data, ACM Comput. Surv., vol.
31, pp. 158–221, 1999.

[7] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M.
Wu, F. Yang, L. Zhou, F. Zhao, and E. Chen, Kineograph:
Taking the pulse of a fast-changing and connected world,
in Proceedings of the 7th ACM European Conference on
Computer Systems, EuroSys’12, New York, NY, USA,
2012, pp. 85–98.

[8] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R.
E. Gruber, Bigtable: A distributed storage system for
structured data, ACM Transactions on Computer Systems,
vol. 26, no. 2, p. 4, 2008.

[9] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil, The
log-structured merge-tree (lsm-tree), Acta Inf., vol. 33, no.
4, pp. 351–385, 1996.

[10] D. Lomet and B. Salzberg, Access methods for
multiversion data, in Proceedings of the 1989 ACM
SIGMOD International Conference on Management of
Data SIGMOD’89, New York, NY, USA, 1989, pp. 315–
324

[11] G. Karypis and V. Kumar, METIS—Unstructured graph
partitioning and sparse matrix ordering system, version
2.0, Tech. Rep., 1995.

[12] M. R. Garey, D. S. Johnson, and L. Stockmeyer, Some
simplified np-complete problems, in Proceedings of the
Sixth annual ACM Symposium on Theory of Computing,
1974, pp. 47–63.

[13] Neo4j, http://neo4j.com/, 2015.
[14] PostgreSQL, http://www.postgresql.org/, 2015.
[15] HBase, http://hbase.apache.org/, 2015.
[16] J. Kunegis, Konect: The koblenz network collection,

in Proceedings of the 22nd International Conference on
World Wide Web Companion, 2013, pp. 1343–1350

[17] D. A. Spielmat and S.-H. Teng, Spectral partitioning
works: Planar graphs and finite element meshes, in
Proceedings of 37th Annual Symposium on Foundations of
Computer Science, 1996, pp. 96–105.

[18] P. Boldi, M. Santini, and S. Vigna, A large time-aware web
graph, SIGIR Forum, vol. 42, no. 2, pp. 33–38, 2008.

[19] J. Leskovec, J. Kleinberg, and C. Faloutsos, Graphs
over time: Densification laws, shrinking diameters and
possible explanations, in Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining, KDD’05, New York, NY, USA,
2005, pp. 177–187.

[20] C. Wilson, B. Boe, R. Sala, K. P. N. Puttaswamy, and B.
Y. Zhao, User interactions in social networks and their
implications, in Proceedings of the 4th ACM European
Conference on Computer Systems, 2009.

[21] K. Lerman, R. Ghosh, and J. H. Kang, Centrality metric
for dynamic networks, in Proceedings of the Eighth
Workshop on Mining and Learning with Graphs, 2010, pp.
70–77.

Wentao Han et al.: Auxo: A Temporal Graph Management System 71

[22] J. Tang, I. Leontiadis, S. Scellato, V. Nicosia, C.
Mascolo, M. Musolesi, and V. Latora, Applications
of temporal graph metrics to real-world networks, in
Temporal Networks, 2013, pp. 135–159.

[23] S. Huang, J. Cheng, and H. Wu, Temporal graph traversals:
Definitions, algorithms, and applications, arXiv preprint
arXiv:1401.1919, 2014.

[24] B. Gedik and R. Bordawekar, Disk-based management of
interaction graphs, IEEE Transactions on Knowledge and
Data Engineering, vol. 26, no. 11, pp. 2689–2702, 2014.

[25] R. Zhang and M. Stradling, The hv-tree: A memory
hierarchy aware version index, Proc. VLDB Endow., vol.
3, pp. 397–408, 2010.

[26] D. Lomet, R. Barga, M. F. Mokbel, G. Shegalov, R.
Wang, and Y. Zhu, Immortal db: Transaction time
support for sql server, in Proceedings of the 2005 ACM
SIGMOD International Conference on Management of
Data SIGMOD’05, New York, NY, USA, 2005, pp. 939–
941

[27] D. Lomet, M. Hong, R. Nehme, and R. Zhang, Transaction
time indexing with version compression, Proceedings of
the VLDB Endowment, vol. 1, no. 1, pp. 870–881, 2008.

[28] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I.
Horn, N. Leiser, and G. Czajkowski, Pregel: A system for
large-scale graph processing, in Proceedings of the 2010
ACM SIGMOD International Conference on Management
of Data, SIGMOD’10, New York, NY, USA, 2010,

pp. 135–146.
[29] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C.

Guestrin, and J. M. Hellerstein, Graphlab: A new
framework for parallel machine learning, arXiv Preprint
arXiv:1006.4990, 2010.

[30] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin, Powergraph: Distributed graph-parallel
computation on natural graphs, in Proceedings of the 10th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, Berkeley, CA, USA, 2012, pp.
17–30.

[31] V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L. Zhou,
and M. Haridasan, Managing large graphs on multicores
with graph awareness, in Proceedings of the 2012 USENIX
Annual Technical Conference (USENIX ATC’12), Boston,
MA, USA, 2012, pp. 41–52

[32] A. Kyrola, G. Blelloch, and C. Guestrin, Graphchi: Large-
scale graph computation on just a PC, in Proceedings of the
10th USENIX Conference on Operating Systems Design
and Implementation, OSDI’12, Berkeley, CA, USA, 2012,
pp. 31–46.

[33] A. Roy, I. Mihailovic, and W. Zwaenepoel, X-stream:
Edge-centric graph processing using streaming partitions,
in Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP’13, New York, NY,
USA, 2013, pp. 472–488.

Wentao Han received the bachelor
and PhD degrees in computer science
from Tsinghua University in 2008 and
2015, respectively. He is currently a
postdoc researcher in Department of
Computer Science and Technology,
Tsinghua University. His research interests
include big data processing systems and

neuromorphic systems.

Wenguang Chen received the bachelor
and PhD degrees in computer science
from Tsinghua University in 1995 and
2000, respectively. He was the CTO of
Opportunity International Inc. from 2000–
2002. Since January 2003, he joined
Tsinghua Univeristy. He is now a professor
in Department of Computer Science and

Technology, Tsinghua University. His research interest is in
parallel and distributed computing, programming model, and
mobile cloud computing.

Kaiwei Li received the bachelor degree
from Tsignhua University in 2014. He is
currently a PhD student in Department
of Computer Science and Technology,
Tsinghua University. His research interest
is in parallel computing.

Shimin Chen received the PhD in
computer science from Carnegie Mellon
University in 2005, and BE and ME
degrees from Tsinghua University in
1997 and 1999, respectively. He is
currently a professor in Institute of
Computing Technology, Chinese Academy
of Sciences. His research interests include

database systems, big data systems, and computer architecture.

		2018-10-11T15:23:19-0400
	Preflight Ticket Signature

