
SPECIAL SECTION ON ADVANCED DATA MINING METHODS FOR SOCIAL COMPUTING

Received June 6, 2019, accepted June 27, 2019, date of publication July 4, 2019, date of current version August 5, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2926753

Parallel Heuristics for Balanced Graph
Partitioning Based on Richness
of Implicit Knowledge
ZHIPENG YANG 1, RONGRONG ZHENG2, AND YINGLONG MA 1, (Member, IEEE)
1School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
2State Grid Information and Telecommunication Group Company Ltd., Beijing 100761, China

Corresponding author: Yinglong Ma (yinglongma@gmail.com)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFC0831404, and in
part by the State Grid Corporation of China Science and Technology Project ‘‘Research on Key Technologies of Knowledge Discovery
Based ICT System Fault Analysis and Assisted Decision’’.

ABSTRACT Balanced graph partitioning (BGP) has a wide range of applications that involve many large-
scale distributed data processing problems. However, most of the existing approaches to parallel graph
partitioning neglect the problem of the richness of implicit knowledge (RIK) residing in big graph and the
knowledge cohesion after graph partitioning. In this paper, we propose a parallel balanced graph partitioning
framework called JA-BE-JA-RIK, which improves the original heuristic JA-BE-JA algorithm by evaluating
RIK such that parallel BGP can be more efficiently made under the condition of obtaining the good edge-cut
value and high knowledge cohesion. We introduce the concept about RIK and further present a quantitative
measure to dynamically evaluate the RIK values during parallel BGP. Based on the Hadoop platform, we also
implemented both frameworks and JA-BE-JA. The extensive experiments were made for illustrating efficacy
of our JA-BE-JA-RIK approach in comparison with the traditional JA-BE-JA algorithm. The experimental
results show that our parallel BGP approach can obtain the RIK value as higher as possible within a closer
number of edge-cuts in comparison with the traditional JA-BE-JA algorithm.

INDEX TERMS Graph partitioning, balanced graph partitioning, parallel graph computing, richness of
implicit knowledge, knowledge cohesion.

I. INTRODUCTION
In the last decades, large amounts of graph data for model-
ing real-world data have been produced by various applica-
tions like social networks [1], biological networks [2] and
bibliographic citation networks [3], etc. Due to the volume
and diversity of drastically growing graph data, the com-
putation complexity and time cost of processing massive
amounts of graph data are also tremendously increasing. The
conventional centralized graph computing methods [4] for
graph query [5] and graph partitioning [6], [7], cannot pro-
cess such massive graph data quickly and efficiently. There-
fore, the processing for large-scale graphs [8] has become
a remarkable challenge in graph computing. It is necessary
to use the parallelism of graph computing methods on dis-
tributed environments [9] for processing large scale graph
data.

The associate editor coordinating the review of this manuscript and
approving it for publication was Shirui Pan.

Balanced graph partitioning (BGP) is a fundamental prob-
lem of graph computing for processing big graph data. Find-
ing good partitions is a well-known and well-studied problem
in graph theory [10]. Although many algorithms [11], [12]
known for graph partitioning have been proposed in the
last decades, most of them have a potential assumption that
random access to the entire graph is cheap. Moreover, most
of existing algorithms require loading the entire large-scale
graphs into the main memories, such as METIS [13], [14],
and KaFFPa [15], etc. It is crucial for partitioning and storing
large-scale graph data on a distributed environment. Parallel
balanced graph partitioning [16] therefore has been con-
sidered as an efficient way to partition big graph data on
distributed environments [17]–[19], which requires partition-
ing a graph into a predefined number of balanced parti-
tions such that each of them has the almost same number
of nodes or edges. Recently, many popular parallel BGP
approaches have been proposed such as ParMETIS [20],
JA-BE-JA [18], etc. ParMETIS is a parallel graph partitioning

96444 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-5442-0970
https://orcid.org/0000-0002-6977-1212

Z. Yang et al.: Parallel Heuristics for BGP Based on RIK

library that extends the functionality provided by METIS
and is suited for parallel computations and large-scale
numerical simulations. JA-BE-JA is recent a parallel BGP
algorithm that can obtain good partitioning results for large-
scale graphs by using local search and heuristic methods.
Moreover, some researches proposed approaches for parti-
tioning large dynamic graphs [21] and streaming graphs [22]
to solve the constraints of memory, communication cost and
response time. In conclusion, existing approaches for parallel
BGP have illustrated their success in partitioning large-scale
graph data by reducing communication overhead within a
balanced computation load.

However, existing approaches for parallel BGP neglect to
satisfy the requirements of users’ graph queries. On one hand,
the goal of efficient BGP is to obtain partitions with high
cohesion, which can achieve efficient graph queries of the
future. A good BGP approach should consider the knowl-
edge cohesion residing in each of partitioned subgraphs such
that users can perform graph queries across fewer partitions.
During parallel BGP, once the subgraphs to be partitioned are
detected to reach the maximum knowledge cohesion, parallel
BGP should be terminated even if parallel BGP has not
obtained the minimum edge-cuts. In this situation, the com-
putational complexity for parallel BGP can be significantly
reduced under the condition of ensuring the effective and effi-
cient graph queries. One the other hand, almost all of parallel
BGP approaches do not fully take into account the richness
of implicit knowledge in each of partitioned subgraphs. The
query knowledge related to specific users is often closely
related to each other, so it is desirable if the knowledge to be
queried can be assembled in single partitions as much as pos-
sible. However, each of subgraphs in existing approaches is
partitioned just by their explicit knowledge (e.g., topological
structure). Much of implicit knowledge that is derived from
the explicit knowledge by using some approaches such as
path-based reasoning is neglected for efficient parallel BGP,
which impedes efficient graph query based on big graph data.
We argue that the richness of the implicit knowledge (RIK)
can greatly reflect the knowledge cohesion of a partitioned
subgraph besides the explicit knowledge.

In this paper, we propose a parallel balanced graph par-
titioning framework called JA-BE-JA-RIK, which improves
the original JA-BE-JA algorithm by evaluating richness of
implicit knowledge such that parallel BGP can be effi-
ciently made under the condition of satisfying users’ graph
query requirements. We define the concept about richness
of implicit knowledge and present an APL-based (Average
Path Length) method to quantitatively evaluate the richness
of implicit knowledge after graph partitioning. Based on
the popular Hadoop platform [23], we also implemented
both frameworks JA-BE-JA-RIK and JA-BE-JA. Extensive
experiments were made for comparison with the traditional
JA-BE-JA algorithm.

This paper is organized as follows. Section 2 is the
related work. Section 3 introduces the energy calculation
of node color exchange. Section 4 is the overview of our

framework JA-BE-JA-RIK. In Section 5, we discuss the par-
allel algorithm of our framework JA-BE-JA-RIK based on
Hadoop. We also present the quantitative measure method of
richness of implicit knowledge (RIK) by using approximate
average path length (APL) in detail. Next, Section 6 gives
the analysis and evaluation of graph partitioning results com-
pared with JA-BE-JA. Finally, Section 7 summarizes the
conclusion and future work.

II. RELATED WORK
Balanced graph partitioning (BGP) is a well-known
NP-complete problem [24], which has been applied to a
wide range of applications such as social networks, biological
networks [25], etc. It requires to partition a graph into a
predefined number of balanced partitions, each of which has
the almost same number of nodes or edges. Graph partitioning
can be divided into two categories according to different
partitioning objects, i.e., edge-cut partitioning and vertex-
cut partitioning [26], [27]. For examples, KaFFPa [15] is a
graph partitioning algorithm based on edge-cut partitioning,
which focuses on local improve methods and overall search
strategies. Pregel [28] is based on vertex-cut partitioning
and bulk synchronous parallel computation model [29], but
its constraints limit the user program’s access to solely the
node on which the program is executing by design. The
key problem of BGP is to ensure the number of edge-cuts
or vertex-cuts as less as possible. The optimal solution for
balanced graph partitioning has become an active research
area.

BGP approaches are often classified into two main cate-
gories according to their search strategies, i.e., local search
based partitioning and global graph partitioning. Global
BGP has been deeply explored in the last decades, which
relies on the global topological structure of the entire
graph to be partitioned, such as the Spectral Partitioning
algorithm [30]–[32]. Global graph partitioning is relevantly
simple and easy to implement, but it has higher computa-
tion complexity and needs to consume more memory cost
due to that it needs to traverse all nodes and edges in the
entire graph. Local search based BGP, such as the KL algo-
rithm [33] and FM algorithm [34], only needs to know the
adjacent nodes or a smaller subset of nodes in the graph.
In contrast to global BGP, local search based BGP has the
lower computation complexity and requires less memory
cost. In addition, some hybrid approaches for BGP have
recently receivedmore attention. For examples, themultilevel
graph partitioning (MGP) [10], [35], has been considered
as one of the most popular graph partitioning algorithms,
which uses both the strategies of local search based BGP and
global BGP. METIS [13] is a famous algorithm based on
MGP to improve the quality of graph partitioning by a three-
phase heuristic algorithm. The hybrid BGP approaches can
partially avoid some limitations of global BGP and local
based BGP. Most of the existing approaches are based on
centralized environments, and are also easy to understand
and implement. However, when the nodes and edges of the

VOLUME 7, 2019 96445

Z. Yang et al.: Parallel Heuristics for BGP Based on RIK

big graph reach the magnitude of million or billion, a single
computer is difficult to partition a big graph data. Moreover,
a large-scale graph has too large volume of data to be loaded
in the memory of a single computer. Partitioning large-scale
graph data therefore becomes a very challenging task due
to the high computation complexity and tolerant perform-
ing time. It is desirable for partitioning large-scale graph
data to store and partition big graph data on a distributed
environment.

In parallel BGP, a big graph will be divided into many
smaller subgraphs such that each of subgraphs can fit into the
memory of a single computer. For examples, ParMETIS [20]
is a parallel version of METIS [13] on distributed systems.
It is faster than METIS and can obtain good partitioning
results with minimum edge-cuts. PowerGraph [36] is another
distributed graph processing framework that uses vertex-cuts
to evenly distribute the edges of graph to multiple machines
so that there are minimum vertex-cuts across multiple par-
titions. JA-BE-JA is a recent most state-of-the-art parallel
BGP approach that employs local search and heuristic
method. During the partitioning, only the direct neighbors
of each node and a small subset of random nodes in the
graph need to be known locally. JA-BE-JA has been proved
to outperform METIS in finding a better partitioning in some
cases [18], especially for graph partitioning of social net-
works. However, the number of iterations performing the
JA-BE-JA algorithm is fixed in order to make the edge-cuts
as less as possible, but the edge-cuts are basically unchanged
in the large part of latter iterations, which will inevitably
bring about extra computation complexity. The work in [37]
designs an implementation of JA-BE-JA based on Spark [38],
which also explores possibly appropriate number of itera-
tions for reducing computation time. These distributed graph
partitioning algorithms have illustrated their success in par-
titioning large-scale graph data by reducing communication
overhead within a balanced computation load.

In this paper, we will focus on the parallel BGP based on
the richness of implicit knowledge. We proposed a parallel
BGP framework called JA-BE-JA-RIK, which extends the
traditional JA-BE-JA algorithm by fully considering RIK
such that parallel BGP can be efficiently made under the
condition of obtaining the RIK value as larger as possible with
a mild increase of edge-cuts.

To the best of our knowledge, this is the first work for effi-
cient parallel BGP to take into accounts the implicit knowl-
edge of large-scale graph data and the knowledge cohesion
of graph partitioning. The contributions of this paper are as
follows.

First, we proposed a parallel BGP framework called
JA-BE-JA-RIK, which improves the traditional heuristic
JA-BE-JA algorithm by fully considering richness of implicit
knowledge such that parallel BGP can be more efficiently
made under the condition of satisfying users’ graph query
requirements.

Second, we introduce the concept about richness of
implicit knowledge (RIK) and further present a quantitative

measure to dynamically evaluate the RIK values during par-
allel BGP.

Third, we implemented our proposed framework
JA-BE-JA-RIK and the original JA-BE-JA based on Hadoop.

At last, extensive experiments were made for illustrating
efficacy of our approach. The experimental results show
that our parallel BGP approach can obtain the richness of
implicit knowledge as higher as possible within a closer
number of edge-cuts in comparison with the traditional
JA-BE-JA algorithm.

III. PRELIMINARIES
Let G = (V ,E) represent a graph data, where V is the set
of nodes and E is the set of edges. A k-way edge-cut BGP
divides V into k subsets with similar equal sizes by a partition
function π : V → {1, . . . , k} that assigns a color to each node.
Here, π (p), or πp for short, refers to the color of node p.
Np is the set of neighbors of node p, and Np(c) represents the
set of neighbors of p that have color c:

Np(c) = {q ∈ Np : πq = c} (1)

The number of neighbors of node p is denoted by dp =
|Np|, and dp(c) = |Np(c)| is the number of neighbors of pwith
color c. The energy of the system is defined as the number
of edges between nodes with different colors (equivalent to
edge-cut). Accordingly, the energy of a node is the number
of its neighbors with a different color, and the energy of the
graph is the sum of the energy of the nodes as follows.

E(G, π) = 1/2
∑

p∈V
(dp − dp(πp)) (2)

In order to minimize the edge-cuts of the partitioning, we
attempt to maximize dp(πp) for any node p in the graph. Thus,
color exchange at each time should decrease the energy of
the graph. In other words, for any two nodes, the number of
their respective neighbors with a similar color increases after
they exchange their colors. Therefore, the energies of node
pairs before and after color exchange can be calculated by
the following Formula 3.

[dp(πq)α + dq(πp)α]× Ti > dp(πp)α + dq(πq)α (3)

The formula adds simulated annealing (SA) to avoid local
optimization, where the value of Ti decreases from 2 to 1
gradually.Moreover, α is a parameter of node energy function
that is not less than 1, and the experiments in paper [18] prove
that its optimal value is 2. For instance, assume that there
are two kinds of colors including gray and white. If α = 1,
color exchange for nodes p and q in Figure 1(a) is accepted,
as the energy sum of nodes p and q changes from 11 + 01

to 11 + 31 after color exchange. However, nodes u and v
in Figure 1(b) will not exchange their colors, because the
energy sums 21 + 21 6< 11 + 31. If α > 1, then nodes u and
v will exchange their colors. Although this color exchange
does not directly reduce the total edge-cuts of the graph,
it increases the possibility of color exchange for node v’s two
gray neighbors.

96446 VOLUME 7, 2019

Z. Yang et al.: Parallel Heuristics for BGP Based on RIK

FIGURE 1. Example of the optimal value of α.

FIGURE 2. The overview of our framework.

IV. OVERVIEW OF FRAMEWORK
In this paper, we present a framework called
JA-BE-JA-RIK that is mainly composed of three stages,
including data preprocessing, node color exchange and
RIK evaluation. The overview of the framework is shown
in Figure 2.

In the stage of data preprocessing, the source graph is
first preprocessed into the graph data with specified formats,
including the node set file and the edge set file. The node set
file contains a column of all nodes in the original graph. In the
edge set file, each node appending all its direct neighbors is
stored as a row. Then, the graph files are stored on HDFS.
Moreover, due to the limited memories, the two graph files
also need to be stored in HBase for iterative computation of
the future. In HBase storage, the entire graph is stored by
plenty of key-value pairs where each node is the key and a
string consisting of all its direct neighbors is the value of
a record. Besides, a color table representing initial colors

of all nodes is read into a HashMap structure before the
first iteration of performing JA-BE-JA-RIK. In this stage,
a predefined number k of partitions should be also specified
for the later graph partitioning. Similar to JA-BE-JA-RIK,
an initial number N of iterations is set for graph partitioning.

Node color exchange is the second stage of our
JA-BE-JA-RIK. The process of node color exchange is imple-
mented based on Hadoop by utilizing the energy computation
proposed by JA-BE-JA. It is executed completely in parallel
on the machine nodes in the cluster. When graph partitioning
begins, each machine node reads only one row from the data
blocks at each time. Then, this row of data is split in mapper
functions. The results of mapper functions are as the input
of reducer functions to perform specific graph partitioning.
There are mainly two steps in the reducer functions, i.e. can-
didate pair selecting and color exchange performing. The first
step is that themain node selects the candidate color exchange
nodes from its direct neighbors or randomly selected nodes.
In the second step, the energies of any two nodes before
and after color exchange are calculated to decide whether
the color exchange will take place. The two nodes exchange
their colors only if the exchange will decrease their energy.
Otherwise, there does not need to exchange their colors. Then
the program goes to the first step and reads next row in the
data blocks for repeating operations above until all nodes
in the graph data perform the operations of color exchange.
At the end of the node color exchange stage, all the node
colors will be updated in the color table.

In the third stage for the RIK evaluation, for each of
iterations, we read the node ids and their colors from the
updated color table to calculate the APLs (the set APLi) of all
partitions and the edge-cuts (all ECi) of graph partitioning.
Then the ratio of ECi to the total number of all edges |E| of
graph data will be calculated and further is compared with β,
where β is an empirical threshold about edge-cuts constraint.
If the ratio is more than β, then we need to make the next
iteration without calculating RIKi in the current iteration.
Otherwise, RIKi should be computed based on the set APLi.
At last, we will detect whether there is a peak of RIK values
by comparing the current RIKi with RIKi−1 and RIKi−2 of
previous two iterations. If a peak of RIK values appears, then
it means thatRIKi−1 of the previous iteration possibly reaches
the biggest RIK value. At this time, the partitioning results
with colors based on our parallel BGP are output, and the
iteration will be terminated without performing the remaining
iterations.

V. JA-BE-JA-RIK ON HADOOP
In this section, we will discuss the relevant implementation
algorithms based on Hadoop, including node color exchange
and RIK evaluation.

A. NODE COLOR EXCHANGE
In the beginning,mappers split the row data read from the data
block by spaces according to the preprocessing graph data
format. The first split value is the current node id, and the

VOLUME 7, 2019 96447

Z. Yang et al.: Parallel Heuristics for BGP Based on RIK

others are the direct neighbor ids of this node. After that,
the split values will be sent to reducers to perform the oper-
ations of node color exchange. In addition, another config-
uration type variable representing the current temperature
for simulation annealing (SA) should be sent to reducers for
sharing the same variable in multiple reducers.

In reducers, the hybrid node selection strategy that com-
bines the local node selection strategy with the random node
selection strategy is used to find out the best candidate node
q from p’s direct neighbors or randomly selected nodes for
color exchange. As for a node np, we chose three nodes from
its neighborhood as candidates, while five nodes chosen ran-
domly from the whole graph. Node q is selected by the energy
calculation of node pairs, which means dp(πq)2 + dq(πp)2 is
the maximum energy sum.

If node q exists, then compare [dp(πq)2+dq(πp)2]×Ti with
dp(πp)2 + dq(πq)2. If the former energy sum is bigger than
the latter, node p and q exchange their colors and the color
table NIC will be updated. Otherwise, their colors are kept
and these operations above are performed on the next node in
the data block. Moreover, if node q does not exist, mappers
will read the next row data and repeat these operations above
until all nodes perform the operations of node color exchange.
The initial temperature T0 is set to 2 and decreases by a stride
δ = 0.003 per iteration, that is, Ti+1 = Ti− δ. When Ti drops
to 1, it does not decrease any longer.

B. RIK CALCULATION BASED ON APL
The graph data contains a lot of explicit knowledge about
topological structure. Utilizing explicit knowledge is one
aspect of graph computing [39], but what is more important
is to use explicit knowledge for user queries in order to
excavate more valuable implicit knowledge from the explicit
knowledge.

The richness of implicit knowledge is an indicator that
reflects the degree to which the implicit knowledge in the
big graph data can be excavated by some graph-based data
mining methods [40], [41].

There are many methods for mining implicit knowledge,
such as degree distributions, hop-plots, shortest paths, etc.
Among these methods, it is proved in [42] that path-based
knowledge mining is a typical method by analyzing the exist-
ing relationships based on paths between nodes in a graph.
For example, we attempt to analyze which researchers have
very similar research areas from the paper citation database.
Although we can directly their research relevance by the
co-author relationship, more potential relevance of research
areas can be excavated by analyzing the citation relationship
between scientific papers that essentially is indirect relation-
ship and can be reflected by a path between paper citations.
The paths based on paper citation are implicit knowledge that
can be fully considered to analyze the similar research areas
among different researchers.

In this paper, we present a feasible approach that uses
average path length (APL) to quantify the richness of implicit
knowledge based on the explicit topological structure.

Algorithm 1 Node Color Exchange
Input: (1) G = (V ,E), (2) initial random colors of nodes
in V. Temperature T0 = 2, i = 0.
Output: the color table NIC = {vid, pid}, where vid is the
node id, pid is the partition id in which vid is located.
1) Begin MapReduce Job
2) Map (String row)
3) strs← row.split(‘‘ ’’); //split the row of data by

spaces
4) key← strs[0];
5) value← strs[1. . .];
6) emit < key, value>;
7) Reduce (key p, value vl[1. . . z])
8) foreach j← 1 to np do// randomly select np nodes

from sets vl or V as set Candidates.
9) Candidates ← Candidates

⋃
(vl.random()

|V .random());
10) end for
11) foreach q in Candidates do
12) EM←max{dp(πq)2+ dq(πp)2}; //EM represents

the maximum energy sum.
13) end for
14) if EM∗Ti > dp(πp)2 + dq(πq)2then //Ti represents

the temperature at the ith iteration
15) Update color tableNIC by color exchange between

p and q;
16) end if
17) T ← max{Ti – δ, 1}; //the final temperature T .

Taking Figure 3 as an example, the number of nodes and
edges in the two graphs are equal. Suppose that the two
graphs are in a paper citation database, where nodes and
edges respectively represent the co-authors and paper citation
relationships between authors. A path can reflect indirect
paper citation. The number of edges (direct paths) is 3 in
both graphs. However, the graph in Figure 3(a) has 3 indirect
paths consisting of edges, which can mine out more implicit
paper citation relationships. The average path length is 10/6 in
Figure 3(a), while 3/3 in Figure 3(b). Intuitionally, APL can
reflect the richness degree of implicit knowledge of graphs to
some extent.

If the data graph is not massive, APL can be calculated
accurately. However, in many cases, since the time com-
plexity of calculating APL is often O(n2), the computation
time for APLs is enormous and intolerable when the graph
to be processed is very large. In order to solve this prob-
lem, many methods for approximately calculating APL were
proposed [43]–[46]. In this paper, we will use the approxi-
mate APL method discussed in [43].

Given a graphG = (V ,E), the formula for calculatingAPL
of G is shown in the following.

APLG ≈ log|V |/logK̄ (4)

96448 VOLUME 7, 2019

Z. Yang et al.: Parallel Heuristics for BGP Based on RIK

FIGURE 3. Example for RIK based on APL.

where K̄ represents the average degree of the sum of all node
degrees, which can be calculated by the following Eq. 5.

K̄ = 1/|V |
∑

p∈V
Dp (5)

where Dp is the degree of node p.
In JA-BE-JA-RIK, the time complexity of calculating K̄ in

each partition is O(n), so this method can solve the problem
of calculating APL very well.

C. RIK EVALUATION ALGORITHM
In JA-BE-JA-RIK, nodes in the data graph are divided into
balanced k partitions randomly at the beginning, so at this
time there are many edge-cuts between partitions and the
number of neighbor nodes with the same color to each
node is small. The RIK evaluation algorithm is shown
in Algorithm 2.

Considering the randomness of color assignments in our
approach, the number of neighbors with the same color to
each node will fluctuating increase as the partitioning pro-
ceeds, which means K̄ of each partition will be fluctuating
increase. In the situation, the RIK value will overall decrease
but fluctuate locally with more iterations. The RIK evaluation
algorithm is just to find the first peak of RIK (often the
largest RIK) when the number of edge-cuts are confined
within a certain range.

At the end of each iteration i, we calculate the APLs of
k partitions and the edge-cuts of the partitioned graph with
traversing the updated table NIC. Then the ratio of ECi to the
total number of all edges |E| of graph data will be calculated
and further is compared with β, where β is a threshold about
edge-cuts constraint. By comparing and analyzing the ratio
of the edge-cuts to the total number of edges in different
graph datasets in JA-BE-JA, we obtained an empirical value
of β: 0.17.

If ECi / |E| ≤ β and i is bigger than 3, further calculations
will bemade to getRIKi of the partitioned graphwith setAPLi
obtained above. After that, we compare RIKi−1 with RIKi
and RIKi−2. If RIKi−1 is greater than both RIKi and RIKi−2,
the first peak of RIK appears and the iterations end. Other-
wise, the framework enters next iteration. The operations of
RIK evaluation will be continuously performed until it finds
the first peak of RIK that is supposed to have the maximum
value. At last, the algorithm outputs all node colors as the
final graph partitioning result.

Algorithm 2 RIK Evaluation
Input: (1) The edge set of G stored in HBase (key as the
node id and value as corresponding neighbors’ ids),
(2) The color table NIC = {vid, pid}, where vid is the

node id, pid is the partition id in which vid is located.
1. foreach < vid, pid > in NIC do //RIK evaluation at

the ith iteration.
2. partition[pid]++; //count the node number of each

partition.
3. neighbors← HBase.get(vid); //get direct neighbors

of node vid from HBase database.
4. foreach pid’ in neighbors do
5. if pid = pid’ then
6. totalDegree[pid]++; //count the total degree of

partition pid.
7. else
8. ECi ++; //count edge-cuts.
9. end if
10. end for
11. foreach j← 1 to k do
12. avgDegree[j]← totalDegree[j] / partition[j];

//count the average degrees of k partitions.
13. APLi,j← log partition[j] / log avgDegree[j];
14. end for
15. end for
16. if i ≥ 3 ∧ ECi/|E| ≤ β then
17. foreach j← 1 to k do
18. RIKi← RIKi + (APLi,j × 1000)2;
19. end for
20. if RIKi < RIKi−1∧ RIKi−1 > RIKi−2 then
21. exit(); //The first peak of RIK appears and the

iterations end.
22. end if
23. end if

VI. EXPERIMENTAL EVALUATION AND ANALYSIS
In this paper, our proposed approach will be implemented
based on Hadoop, HDFS and MapReduce [23], [47], [48].
Since JA-BE-JA has been compared the edge-cuts with
METIS and this paper aimed to optimize JA-BE-JA,
the experimental results were only compared with JA-BE-JA.
All experiments were repeated five or more times. We report
the average of these measurements. The settings of our
experiment environments will be introduced in the following
in detail.

A. EXPERIMENT SETTINGS
In this paper, we use the MyEclipse + Ubuntu14.04.4 +
JDK1.7.0+ Hadoop2.5.2 cluster. The Hadoop cluster has up
to eight machine nodes deployed in virtual machines on eight
computers. The hardware settings and software versions are
as follows.

B. DATASETS
We have used three graph datasets, including add20 and
3elt from the Walshaw archive [50], and the well-known

VOLUME 7, 2019 96449

Z. Yang et al.: Parallel Heuristics for BGP Based on RIK

TABLE 1. Hardware settings.

TABLE 2. Software versions.

TABLE 3. Details about datasets.

social network graph Facebook [51]. The details about these
datasets are listed in Table 3.

C. FEASIBILITY AND VALIDITY ANALYSIS
These datasets are calculated on our Hadoop cluster with
different numbers (i.e., 2, 4, 8) of machine nodes respec-
tively. In order to evaluate the performance of our framework
JA-BE-JA-RIK, we performed related experiments and ana-
lyzed the experimental results from three aspects: Speedup,
Scaleup, and Sizeup.

1) SPEEDUP ANALYSIS
Speedup analysis records the running time on different num-
ber of machine nodes, so as to analyze the performance of
our framework in different datasets. The formula of Speedup
is shown as follows.

Speedup(m) = T1/Tm (6)

In Formula 6, m represents the number of machine nodes
used in the cluster, T1 represents the time required for a single
machine to process the dataset, and Tm represents the total
time required to process the dataset on m machines.
We performed the Speedup experiments respectively on

two, four and eight machine nodes. The communication cost
between machine nodes increases as the number of machine
nodes increases, but Figure 4 shows that the parallel graph
partitioning on different datasets is approximate linear, which
shows that our partitioning approach has a good speedup for
parallel graph partitioning.

FIGURE 4. Speedup for different graphs.

FIGURE 5. Scaleup of JA-BE-JA-RIK.

2) SCALEUP ANALYSIS
Scaleup analysis mainly compares the respective partitioning
time based on the same increase scale of graph datasets and
the number of machines. The formula of Scaleup is shown as
follows.

Scaleup(D,m) = TD1/TDm (7)

where D is a dataset of a specified size, m is the multiple
of dataset growth, TD1 is the execution time of calculating
dataset D on a single machine, and TDm is the execution time
when the size of processing dataset is increased by m times
as well as the number of executing nodes in the cluster is also
increased by m times. If the value of Scaleup is maintained
at around 1.0 with the increase of m, it indicates the parallel
algorithm has good scalability for large datasets.

From the experimental results in Figure 5, it can be seen
that the number of machine nodes in the cluster increases
with the growth of datasets, and it is difficult to control the
running time changing with the same scale. As the number
of machine node increases the communication cost of the
cluster, the overall scalability of JA-BE-JA-RIK onHadoop is
maintained between 0.5 and 0.9, indicating that the algorithm
is within an acceptable range.

3) SIZEUP ANALYSIS
Sizeup analysis is mainly to place the graph datasets of
different sizes on clusters with equal numbers of machines.

96450 VOLUME 7, 2019

Z. Yang et al.: Parallel Heuristics for BGP Based on RIK

FIGURE 6. Sizeup of different machine nodes.

It mainly compares the execution time of processing data
with different sizes on fixed number of machine nodes. The
formula of Sizeup is shown as follows.

Sizeup(D,m) = TSm/TS1 (8)

where D is a dataset of a specified size, m is the multiple of
data growth, TS1 indicates the execution time when the data
is run in a cluster of a fixed number of machines, and TSm
indicates the execution time of data expanding m times with
the same number of machines.

The experiment in Figure 6 calculates all the datasets on
2, 4, and 8 machine nodes, and counts the total running
time. In one experiment, keep the number of machine nodes
constant, then calculate the running time of different scale
datasets. It can be seen from it that the larger the dataset
size is, the more significant the Sizeup growth is. When the
number of machine nodes in the cluster increases, the Sizeup
growth may decrease. This is mainly due to the difference in
machine performance when calculating, and the final time is
based on the last machine that ends up, resulting in increasing
the total running time.

D. EXPERIMENTAL ANALYSIS COMPARED WITH
JA-BE-JA APPROACH
Considering JA-BE-JA was originally implemented on Peer-
Sim [49], we implemented a Hadoop version of JA-BE-JA
algorithm (called JA-BE-JA-Hadoop) for the experiments
and analysis of the future, compared with our approach
(JA-BE-JA-RIK). The specific comparison and analysis will
bemade from three perspectives, i.e. the number of edge-cuts,
the number of iterations, and the RIK value of partitions.

1) COMPARISON AND ANALYSIS OF EDGE-CUTS
By changing the number of partitions, we compare the
obtained edge-cuts of JA-BE-JA, JA-BE-JA-Hadoop and
JA-BE-JA-RIK in the following. Figure 7 shows the edge-cuts
of the three algorithms with different datasets and number of
partitions after iterations.

Through comparing the experimental results between
JA-BE-JA and JA-BE-JA-Hadoop, it can be seen that the

edge-cuts obtained by JA-BE-JA-Hadoop is very close to
JA-BE-JA on add20 and Facebook graph, slightly larger dif-
ference on 3elt graph due to its own characteristics. Overall,
the smaller the number of partitions is, the closer the edge-
cuts are. When JA-BE-JA-Hadoop processes different num-
bers of partitions respectively, the edge-cut value of add20 is
average 5.5% higher than JA-BE-JA, and that of 3elt is 24.9%
and Facebook 3.5%. From the above data, it can be seen that
the edge-cuts of JA-BE-JA-Hadoop with different number
of partitions increases by an average of 12% in contrast
to JA-BE-JA, indicating that JA-BE-JA-Hadoop can obtain
a good edge-cut value.

JA-BE-JA-Hadoop consistently produces partitions with
very comparable edge-cuts (less than 12% difference) to
the original JA-BE-JA algorithm. As a result, we can use
JA-BE-JA-Hadoop as the standard on Hadoop for fur-
ther experimental comparison. Based on the Hadoop plat-
form, we compare the edge-cuts of JA-BE-JA-Hadoop with
JA-BE-JA-RIK obtained from partitioning results on different
datasets.

Through comparing JA-BE-JA-Hadoop with
JA-BE-JA-RIK, it can be seen that the edge-cuts obtained by
them are very close, although JA-BE-JA-RIK obtains more
edge-cuts than JA-BE-JA-Hadoop. In conclusion, the average
increases of edge-cuts in JA-BE-JA-RIK are less than 10%,
which fulfills our predetermined condition, i.e., obtaining
the RIK value as larger as possible with a mild increase
of edge-cuts.

2) COMPARISON AND ANALYSIS OF ITERATIONS
In the following, we compare JA-BE-JA-Hadoop with
JA-BE-JA-RIK from the number of iterations performing
graph partitioning.

As can be seen from Figure 8, the number of iterations of
JA-BE-JA-RIK is greatly reduced, which is lower than 20%of
JA-BE-JA-Hadoop. The early iterations of graph partitioning
are very effective, because the color exchange is easy to
happen. As the program goes, it becomes harder for nodes
to find a candidate to exchange color with. As a result, the
iteration at the later stage is useless for reducing edge-cuts,
but wastes a lot of resources and generates extra computation.
Though the number of iterations is dropped drastically, it does
not affect the graph partitioning results and a good edge-cuts
value still can be obtained.

3) COMPARISON AND ANALYSIS OF THE RICHNESS OF
IMPLICIT KNOWLEDGE
In the following, we will compare JA-BE-JA-Hadoop with
JA-BE-JA-RIK from the RIK value of partitions of the final
graph partitioning results.

Figure 9 shows the RIK value of partitioning results
obtained by the two approaches. Compared with
JA-BE-JA-Hadoop, the RIK value obtained by
JA-BE-JA-RIK has an average increase of 10%, which means
our framework outperforms JA-BE-JA in obtaining partitions
with higher RIK value to some extent.

VOLUME 7, 2019 96451

Z. Yang et al.: Parallel Heuristics for BGP Based on RIK

FIGURE 7. Comparison of edge-cuts with different numbers of partitions (JA-BE-JA vs. JA-BE-JA-Hadoop vs. JA-BE-JA-RIK).

TABLE 4. Comparison of the overall partitioning results.

FIGURE 8. Comparison of the number of iterations on different graphs
(JA-BE-JA-Hadoop vs. JA-BE-JA-RIK).

FIGURE 9. Comparison of RIK value on different graphs
(JA-BE-JA-Hadoop vs. JA-BE-JA-RIK).

4) COMPREHENSIVE COMPARISON OF PARALLEL
BALANCED GRAPH PARTITIONING RESULTS
We also comprehensively compare JA-BE-JA-Hadoop
with JA-BE-JA-RIK according to the partitioning results.

Table 4 lists the graph partitioning results obtained by both
the approaches in details. Through comparison and analysis,
our approach can greatly reduce the number of iterations
and obtain the larger richness of implicit knowledge (RIK)
within a closer number of edge-cuts in comparison with the
traditional JA-BE-JA algorithm. It is worth noting that our
approach can significantly reduce the number of iterations
(decreasing the running time of BGP) with a mild increase of
edge-cuts.

VII. CONCLUSION
We proposed a parallel BGP framework called
JA-BE-JA-RIK by defining the concept about richness of
implicit knowledge for parallel BGP, which can improve
the efficacy of graph partitioning compared with JA-BE-JA.
We designed and implemented our proposed framework on
the Hadoop platform. Related experiments were made for
illustrating that our approach outperforms JA-BE-JA, and
can obtain the larger richness of implicit knowledge within a
closer number of edge-cuts in comparison with the traditional
JA-BE-JA algorithm.

There still exists some work to be done. Although the
experimental results prove our framework can obtain the
graph partitioning result with good RIK value, more work
should be done to utilize our approach to optimize users’
graph queries. We should solve the problem that how to
combine our partitioning approach with graph queries so that
graph queries can be made efficiently.

REFERENCES
[1] J. Tang, J. Zhang, L. Yao, and J. Li, ‘‘Extraction and mining of an academic

social network,’’ in Proc. KDD, Las Vegas, Nevada, USA, Aug. vol. 2008,
pp. 990–998.

[2] Y. Tian, ‘‘SAGA: A subgraph matching tool for biological graphs,’’ Bioin-
formatics, vol. 23, no. 2, pp. 232–239, Jan. 2007.

96452 VOLUME 7, 2019

Z. Yang et al.: Parallel Heuristics for BGP Based on RIK

[3] Y. Ding, ‘‘Scientific collaboration and endorsement: Network analysis
of coauthorship and citation networks,’’ J. Informetrics, vol. 5, no. 1,
pp. 187–203, Jan. 2011.

[4] X. Liu, Y. Zhou, X. Guan, and C. Shen, ‘‘A feasible graph partition frame-
work for parallel computing of big graph,’’ Knowl.-Based Syst., vol. 134,
pp. 228–239, Oct. 2017.

[5] C. Nabti and H. Seba, ‘‘Querying massive graph data: A compress
and search approach,’’ Future Gener. Comput. Syst., vol. 74, pp. 63–75,
Sep. 2017.

[6] G. Karypis and V. Kumar, ‘‘Multilevelk-way partitioning scheme for irreg-
ular graphs,’’ J. Parallel Distrib. Comput., vol. 48, no. 1, pp. 96–129,
Jan. 1998.

[7] P. Sanders and C. Schulz, ‘‘Distributed evolutionary graph partitioning,’’ in
Proc. Algorithm Eng. Expermiments (ALENEX), Kyoto, Japan, Jan. 2012,
pp. 16–29.

[8] V. Bhatia and R. Rani, ‘‘A parallel fuzzy clustering algorithm for large
graphs using pregel,’’ Expert Syst. Appl., vol. 78, pp. 135–144, Jul. 2017.

[9] R. Power and J. Li, ‘‘Piccolo: Building fast, distributed programs with
partitioned tables,’’ in Proc. OSDI, Vancouver, BC, Canada, Oct. 2010,
pp. 293–306.

[10] B. Hendrickson and R. Leland, ‘‘A multi-level algorithm for partitioning
graphs,’’ in Proc. SC, San Diego, CA, USA, Dec. 1995, Art. no. 28.

[11] H. Meyerhenke, B. Monien, and T. Sauerwald, ‘‘A new diffusion-based
multilevel algorithm for computing graph partitions of very high quality,’’
in Proc. ISPDP, Miami, FL, USA, Jun. 2008, pp. 1–13.

[12] H. Meyerhenke, B. Monien, and S. Schamberger, ‘‘Graph partitioning and
disturbed diffusion,’’ Parallel Comput., vol. 35, nos. 10–11, pp. 544–569,
Oct. 2009.

[13] G. Karypis and V. Kumar, ‘‘A fast and high quality multilevel scheme
for partitioning irregular graphs,’’ SIAM J. Sci. Comput., vol. 20, no. 1,
pp. 359–392, Aug. 1999.

[14] Y. Low, D. Bickson, J. Gonzalez, A. Kyrola, and J. M. Hellerstein, ‘‘Dis-
tributed GraphLab: A framework for machine learning and data mining
in the cloud,’’ in Proc. VLDB, Istanbul, Turkey, vol. 5, no. 8, Aug. 2012,
pp. 716–727.

[15] P. Sanders and C. Schulz, ‘‘Engineering multilevel graph partitioning algo-
rithms,’’ in Proc. ESA, Saarbrücken, Germany, Sep. 2011, pp. 469–480.

[16] P. Sanders and C. Schulz, ‘‘Think locally, act globally: Highly balanced
graph partitioning,’’ in Proc. SEA, Rome, Italy, Jun. 2013, pp. 164–175.

[17] A.-L. Barabási and R. Albert, ‘‘Emergence of scaling in random net-
works,’’ Science, vol. 286, no. 5439, pp. 509–512, 1999.

[18] F. Rahimian, ‘‘JA-BE-JA: A distributed algorithm for balanced graph par-
titioning,’’ in Proc. SASO, Philadelphia, PA, USA, Sep. 2013, pp. 51–60.

[19] E. G. Talbi,Metaheuristics: FromDesign to Implementation. Hoboken, NJ,
USA: Wiley, Jun. 2009.

[20] G. Karypis and V. Kumar, ‘‘Parallel multilevel series k-way partitioning
scheme for irregular graphs,’’ SIAMRev., vol. 41, no. 2, pp. 278–300, 1999.

[21] L. M. Vaquero, F. Cuadrado, D. Logothetis, and C. Martella, ‘‘Adaptive
partitioning for large-scale dynamic graphs,’’ in Proc. IEEE 34th Int. Conf.
Distrib. Comput. Syst., Jul. 2014, pp. 144–153.

[22] I. Stanton and G. Kliot, ‘‘Streaming graph partitioning for large distributed
graphs,’’ in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining (KDD), Beijing, China, Aug. 2012, pp. 1222–1230.

[23] A. Gialecki, M. Cafarella, D. Cutting, and O. Malley, (2018). Hadoop: A
Framework for Running Applications on Large Clusters Built of Commod-
ity Hardware. [Online]. Available: http://hadoop.apache.org/

[24] G. Linden, B. Smith, and J. York, ‘‘Amazon.com recommendations: Item-
to-item collaborative filtering,’’ IEEE Internet Comput., vol. 7, no. 1,
pp. 76–80, Jan./Feb. 2003.

[25] H. Bolouri, ‘‘Modeling genomic regulatory networks with big data,’’
Trends Genet., vol. 30, no. 5, pp. 182–191, May 2014.

[26] F. Rahimian, ‘‘A distributed algorithm for large-scale graph partitioning,’’
ACM Trans. Auto. Adapt. Syst., vol. 10, no. 2, Jun. 2015, Art. no. 12.

[27] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, ‘‘GraphX: A
resilient distributed graph system on Spark,’’ in Proc. GRADES, NewYork,
NY, USA, Jun. 2013, Art. no. 2.

[28] G.Malewicz, ‘‘Pregel: A system for large-scale graph processing,’’ inProc.
ACM SIGMOD Int. Conf. Manage. Data, Jun. 2010, pp. 135–146.

[29] L. G. Valiant, ‘‘A bridging model for parallel computation,’’ Commun.
ACM, vol. 33, no. 8, pp. 103–111, 1990.

[30] S. T. Barnard and H. D. Simon, ‘‘Fast multilevel implementation of recur-
sive spectral bisection for partitioning unstructured problems,’’ Concur-
rency Pract. Exper., vol. 6, no. 2, pp. 101–117, Apr. 1994.

[31] M. Fiedler, ‘‘A property of eigenvectors of nonnegative symmetric matrices
and its application to graph theory,’’ Czech. Math. J., vol. 25, pp. 619–633,
1975.

[32] A. Pothen, H. D. Simon, and K. P. Liou, ‘‘Partitioning sparse matrices
with eigenvectors of graphs,’’ Siam J. Matrix Anal. Appl., vol. 11, no. 3,
pp. 430–452, 1990.

[33] B. W. Kernighan and S. Lin, ‘‘An efficient heuristic procedure for parti-
tioning graphs,’’ Bell Syst. Tech. J., vol. 49, no. 2, pp. 291–307, Feb. 1970.

[34] C. M. Fiduccia and R. M. Mattheyses, ‘‘A linear-time heuristic for improv-
ing network partitions,’’ in Proc. 19th Design Autom. Conf. (DAC), Las
Vegas, NV, USA, Jun. 1982, pp. 175–181.

[35] V. Osipov and P. Sanders, ‘‘n-level graph partitioning,’’ in Proc. ESA,
Liverpool, U.K., Sep. 2010, pp. 278–289.

[36] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, ‘‘PowerGraph:
Distributed graph-parallel computation on natural graphs,’’ in Proc. OSDI,
Hollywood, CA, USA, Oct. 2012, pp. 17–30.

[37] E. Carlini, P. Dazzi, A. Esposito, A. Lulli, and L. Ricci, ‘‘Balanced graph
partitioning with Apache spark,’’ in Proc. Eur. Conf. Parallel Process.,
pp. 129–140, Aug. 2014.

[38] C. Metz. (2013). Spark: Open Source Superstar Rewrites Future of Big
Data. [Online] Available: http://www.wired.com/2013/06/yahoo-amazon-
amplab-spark/all/

[39] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, ‘‘A review of rela-
tional machine learning for knowledge graphs,’’ in Proc. IEEE, vol. 104,
no. 1, pp. 11–33, Sep. 2015.

[40] X. Yan, J. Zhang, Y. Xun, and Q. Xiao, ‘‘A parallel algorithm for mining
constrained frequent patterns using MapReduce,’’ Soft Comput., vol. 21,
no. 9, pp. 2237–2249, 2017.

[41] M. K. Najafabadi, A. H. Mohamed, and M. N. Mahrin, ‘‘A survey on data
mining techniques in recommender systems,’’ Soft Comput., vol. 23, no. 2,
pp. 627–654, Jan. 2019.

[42] A. Chemchem and H. Drias, ‘‘From data mining to knowledge mining:
Application to intelligent agents,’’ Expert Syst. Appl., vol. 42, no. 3,
pp. 1436–1445, Feb. 2015.

[43] R. Albert and A.-L. Barabasi, ‘‘Statistical mechanics of complex net-
works,’’ Rev. Modern Phys., vol. 74, no. 1, pp. 48–94, Jan. 2002.

[44] B. Bollobás, ‘‘Random graphs,’’ in Modern Graph Theory (Graduate
Texts in Mathematics), vol. 184. New York, NY, USA: Springer, 1998,
pp. 215–252.

[45] D. J. Watts, Small Worlds: The Dynamics of Networks Between Order and
Randomness. Upper Saddle River, NJ, USA: Princeton Univ. Press, 1999.

[46] D. J. Watts and S. H. Strogatz, ‘‘Collective dynamics of ’small-world’
networks,’’ Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[47] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data process-
ing on large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113,
2008.

[48] M. R. Ghazi and D. Gangodkar, ‘‘Hadoop, MapReduce and HDFS:
A developers perspective,’’ Procedia Comput. Sci., vol. 48, pp. 45–50,
May 2015.

[49] A. Montresor and M. Jelasity, ‘‘PeerSim: A scalable P2P simulator,’’ in
Proc. IEEE 19th Int. Conf. Peer-to-Peer Computing (IEEE P2P), Seattle,
WA, USA, Sep. 2009, pp. 99–100.

[50] C. Walshaw. (2016). The graph partitioning archive—Test
Graphs. Accessed: Aug. 25, 2016. [Online]. Available:
http://chriswalshaw.co.uk/partition/.

[51] B. Viswanath, A. Mislove, M. Cha, and K. Gummadi, ‘‘On the evolution of
user interaction in facebook,’’ in Proc. 2nd ACM Workshop Online Social
Networks(WOSN), Barcelona, Spain, Aug. 2009, pp. 37–42.

ZHIPENG YANG received the B.S. degree in com-
puter science from North China Electric Power
University, Beijing, China, in 2017, where he
is currently pursuing the M.S. degree in com-
puter science. His research interests include big
data analysis and processing, and parallel graph
computing.

He is a member of China Computer Foundation
(CCF).

VOLUME 7, 2019 96453

Z. Yang et al.: Parallel Heuristics for BGP Based on RIK

RONGRONG ZHENG received the B.S. degree
in computer science from the Beijing University
of Post and Telecommunication, Beijing, China,
in 2017. She is currently a Senior Engineer
with State Grid Information and Telecommunica-
tion Group Company Ltd. Her research interests
include electric power informationization and big
data analysis.

YINGLONG MA (M’13) received the M.S. degree
in computer science from Northwestern Univer-
sity, Xi’an, China, in 2002, and the Ph.D. degree
in computer science from the Institute of Software,
Chinese Academy of Sciences, Beijing, China,
in 2006.

From 2006 to 2009, he was an Associate Pro-
fessor with North China Electric Power University,
Beijing, China, where he has been a Full Professor
with the School of Control and Computer Engi-

neering, since 2016. From 2010 to 2011, he was a Visiting Professor with
the School of Computer Science, Georgia Institute of Technology, Atlanta,
GA, USA. He is the author of two books, more than 70 articles in some
international journals and international conferences, andmore than six inven-
tions. His research interests include artificial intelligence and knowledge
engineering, big data analysis and processing, and software engineering.
He is also a member of ACM and a Senior Member of China Computer
Foundation (CCF).

96454 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	PRELIMINARIES
	OVERVIEW OF FRAMEWORK
	JA-BE-JA-RIK ON HADOOP
	NODE COLOR EXCHANGE
	RIK CALCULATION BASED ON APL
	RIK EVALUATION ALGORITHM

	EXPERIMENTAL EVALUATION AND ANALYSIS
	EXPERIMENT SETTINGS
	DATASETS
	FEASIBILITY AND VALIDITY ANALYSIS
	SPEEDUP ANALYSIS
	SCALEUP ANALYSIS
	SIZEUP ANALYSIS

	EXPERIMENTAL ANALYSIS COMPARED WITH JA-BE-JA APPROACH
	COMPARISON AND ANALYSIS OF EDGE-CUTS
	COMPARISON AND ANALYSIS OF ITERATIONS
	COMPARISON AND ANALYSIS OF THE RICHNESS OF IMPLICIT KNOWLEDGE
	COMPREHENSIVE COMPARISON OF PARALLEL BALANCED GRAPH PARTITIONING RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	ZHIPENG YANG
	RONGRONG ZHENG
	YINGLONG MA

