
Received March 30, 2020, accepted April 26, 2020, date of publication May 7, 2020, date of current version May 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2993117

Mapping RDF Databases to Property
Graph Databases
RENZO ANGLES 1, HARSH THAKKAR 2,4, AND DOMINIK TOMASZUK 3
1Department of Computer Science, Faculty of Engineering, Universidad de Talca, Curicó 3340000, Chile
2OSTHUS GmbH, 52068 Aachen, Germany
3Institute of Informatics, University of Białystok, 15-245 Białystok, Poland
4Informatik III Department, University of Bonn, 53115 Bonn, Germany

Corresponding author: Renzo Angles (renzoangles@gmail.com)

The work of Renzo Angles was supported by the Millennium Institute for Foundational Research on Data (Chile). The work of Harsh
Thakkar was supported in part by OSTHUS GmbH. The work of Dominik Tomaszuk was supported by the National Science Center,
Poland (NCN) under Grant Miniatura 2.

ABSTRACT RDF triplestores and property graph databases are two approaches for data management which
are based on modeling, storing and querying graph-like data. In spite of such common principle, they present
special features that complicate the task of database interoperability. While there exist some methods to
transform RDF graphs into property graphs, and vice versa, they lack compatibility and a solid formal
foundation. This paper presents three direct mappings (schema-dependent and schema-independent) for
transforming an RDF database into a property graph database, including data and schema. We show that
two of the proposed mappings satisfy the properties of semantics preservation and information preservation.
The existence of both mappings allows us to conclude that the property graph data model subsumes the
information capacity of the RDF data model.

INDEX TERMS Database interoperability, direct mapping, RDF, property graph.

I. INTRODUCTION
The database systems based on graph-oriented models are
gaining relevance in the industry due to their use in var-
ious application domains where complex data analytics is
required [4]. RDF triple stores and graph database systems
are two approaches for data management that are based on
modeling, storing, and querying graph-like data.

RDF triplestores are based on the RDF data model [24],
[41], their standard query language is SPARQL [19], and
RDF Schema [11] allows to describe classes of resources and
properties (i.e. the data schema). On the other hand, most
graph database systems are based on the Property Graph (PG)
data model [2], and a standard query language is in current
development [23].

Although the RDF model and the PG model are based
on a graph-oriented structure, they have particularities that
complicate the task of data interoperability between them.
Among the most important differences we can mention: a
PG allows properties for nodes and edges, i.e. nodes and
edges could have a set of name-value pairs which are used

The associate editor coordinating the review of this manuscript and

approving it for publication was Wajahat Ali Khan .

to introduce metadata; the RDF model use elements with
special syntax and semantics (e.g. IRIs, blank nodes, literals,
namespaces, reification, collections).

A. MOTIVATION
Considering the intrinsic connection between RDF triple
stores and PG databases, and their popularity for representing
knowledge databases, it becomes necessary to develop meth-
ods to allow interoperability among these types of systems.

The term ‘‘Interoperability’’ was introduced in the area
of information systems, and is defined as the ability of
two or more systems or components to exchange information,
and to use the information that has been exchanged [35]. In
the context of data management, interoperability is concerned
with the support of applications that share and exchange
information across the boundaries of existing databases [32].

Database interoperability is relevant for several reasons:
promotes data exchange and data integration [30]; facilitates
the reuse of available systems and tools [26], [32]; enables
a fair comparison of database systems by using benchmarks
[3], [37]; and supports the success of emergent systems and
technologies [32].

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 86091

https://orcid.org/0000-0002-6740-9711
https://orcid.org/0000-0001-7707-3302
https://orcid.org/0000-0003-1806-067X
https://orcid.org/0000-0003-4118-7855

R. Angles et al.: Mapping RDF Databases to Property Graph Databases

B. THE PROBLEM
To the best of our knowledge, the research about the interop-
erability between RDF and PG databases is very restricted
(cf. Section VII). While there exist some system-specific
approaches, most of them are restricted to data transformation
and lack of solid formal foundations.

C. OBJECTIVES & CONTRIBUTIONS
Database interoperability can be divided into syntactic
interoperability (i.e. data transformations), semantic interop-
erability (i.e. data exchange via schema and instance map-
pings), and query interoperability (i.e. transformations among
different query languages or data accessing methods) [5].

The main objective of this paper is to study the semantic
interoperability between RDF and PG databases. Specifi-
cally, we propose three database mappings: a simple mapping
which allows transforming an RDF graph into a PG without
considering schema restrictions (in both sides); a generic
mapping which allows transforming an RDF graph (without
RDF schema) into a PG that follows the restrictions defined
by a generic PG schema; and, a complete mapping which
allows transforming a complete RDF database into a com-
plete PG database (i.e. schema and instance).

We study three desirable properties of the above database
mappings: computability, semantics preservation, and infor-
mation preservation. Based on such analysis, we argued that
any RDF database can be transformed into a PG database.
In terms of data modeling, we conclude that the PG data
model subsumes the information capacity of the RDF data
model.

The remainder of this paper is as follows: a formal back-
ground is presented in Section IV; the simple database map-
ping is described in Section III; the generic database mapping
is described in Section IV; the complete database mapping
is described in Section V; the experimental evaluation of
the mappings is presented in Section VI; the related work
is discussed in Section VII; our conclusions are presented in
Section VIII.

II. PRELIMINARIES
This section presents a formal background required to study
the interoperability between RDF and PG databases. In par-
ticular, we formalize the notions of database mapping, RDF
database, and PG database.

A. DATABASE MAPPINGS
In general terms, a database mapping is a method to trans-
late databases from a source database model to a target
database model. We can consider two types of database
mappings: direct database mappings, which allow an auto-
matic translation of databases without any input from the
user [34]; and manual database mappings, which require
additional information (e.g. an ontology) to conduct the
database translation. In this paper, we focus on direct database
mappings.

1) DATABASE SCHEMA AND INSTANCE
LetM be a database model. A database schema inM is a set
of semantic constraints allowed by M . A database instance
in M is a collection of data represented according to M .
A database in M is an ordered pair DM = (SM , IM), where
SM is a schema and IM is an instance.
If a database DM does not define its schema, i.e. DM =

(∅, IM), we will say that DM is a schema-less database. If
DM does not define its instance, i.e. (SM ,∅), then DM will
be called an empty database. If DM defines both, schema and
instance, then we have a complete database.

Note that the above definition does not establish that
the database instance satisfies the constraints defined by
the database schema. Given a database instance IM and a
database schema SM , we say that IM is valid with respect
to SM , denoted IM |H SM , iff IM satisfies the constraints
defined by SM . Given a database DM = (SM , IM), we say
that DM is a valid database iff it satisfies that IM |H SM .

2) SCHEMA, INSTANCE, AND DATABASE MAPPING
Adatabasemapping defines a way to translate databases from
a ‘‘target’’ database model to a ‘‘source’’ database model. For
the rest of this section, assume thatM1 andM2 are the source
and the target database models respectively.
Considering that a database includes a schema and an

instance, we first define the notions of schema mapping and
instance mapping. A schema mapping from M1 to M2 is a
function SM from the set of all database schemas in M1,
to the set of all database schemas inM2. Similarly, an instance
mapping fromM1 toM2 is a function IM from the set of all
database instances in M1, to the set of all database instances
in M2.
A database mapping from M1 to M2 is a function DM

from the set of all databases inM1, to the set of all databases
in M2. Specifically, a database mapping is defined as the
combination of a schema mapping and an instance mapping.
Definition 1 (Database Mapping): A database mapping is

a pair DM = (SM, IM) where SM is a schema mapping
and IM is an instance mapping.

a: PROPERTIES OF DATABASE MAPPINGS
Every data model allows to structure the data in a spe-
cific way, or using a particular abstraction. Such abstraction
determines the conceptual elements that the data model can
represent, i.e. its representation power or information capac-
ity [22].
Given two database models M1 and M2, the possibility to

exchange databases between them depends on their infor-
mation capacity. Specifically, we say that M1 subsumes the
information capacity of M2 iff every database in M2 can be
translated to a database in M2. Additionally, we say that M1
andM2 have the same information capacity iffM1 subsumes
M2 and M2 subsumes M1.

The information capacity of two database models can
be evaluated in terms of a database mapping satisfying

86092 VOLUME 8, 2020

R. Angles et al.: Mapping RDF Databases to Property Graph Databases

some properties. In particular, we consider three proper-
ties: computability, semantics preservation, and information
preservation.

Assume that D1 is the set of all databases in a source
database model M1, and D2 is the set of all databases in a
target database modelM2.
Definition 2 (Computable mapping): Adatabasemapping

DM : D1 → D2 is computable if there exists an algorithm
A that, given a database D ∈ D1, A computes DM(D).
The property of computability indicates the existence and

feasibility of implementing a database mapping from M1
to M2. This property also implicates that M2 subsumes the
information capacity ofM1.
Definition 3 (Semantics Preservation): A computable

database mapping DM : D1 → D2 is semantics preserving
if for every valid database D ∈ D1, there is a valid database
D′ ∈ D2 satisfying that D′ = DM(D).
Semantics preservation indicates that the output of a

database mapping is always a valid database. Specifically,
the output database instance satisfies the constraints defined
by the output database schema. In this sense, we can say that
this property evaluates the correctness of a database mapping.
Definition 4 (Information preservation): A database map-

ping DM = (SM, IM) fromM1 toM2 is information pre-
serving if there is a computable database mappingDM−1

=

(SM−1, IM−1) fromM2 toM1 such that for every database
D = (S, I) in M1, it applies that D = DM−1(DM(D)).
Information preservation indicates that, for some database

mapping DM3, there exists an ‘‘inverse’’ database mapping
DM−1 which allows recovering a database transformed with
DM3. Note that the above definition implies the existence of
both a ‘‘inverse’’ schema mapping SM−1 and a ‘‘inverse’’
instance mapping IM−1.
Information preservation is a fundamental property

because it guarantees that a database mapping does not lose
information [34]. Moreover, it implies that the information
capacity of the target database model subsumes the informa-
tion capacity of the source database model.

Our goal is to define database mappings between the RDF
data model and the PG data model. Hence, next, we will
present a formal definition of the notions of instance, schema,
and database for them.

B. RDF DATABASES
An RDF database is an approach for data management which
is oriented to describe the information about Web resources
by using Web models and languages. In this section we
describe two fundamental standards used by RDF databases:
the Resource Description Framework (RDF) [24], which
is the standard data model to describe the data; and RDF
Schema [11], which is a standard vocabulary to describe the
structure of the data.

1) RDF GRAPH
Assume that I , B, and L are three disjoint infinite sets,
corresponding to IRIs, blank nodes and literals respectively.

An IRI identifies a concrete web resource, a blank node
identifies an anonymous resource, and a literal is a basic value
(e.g. a string, a number or a date). We will use the term RDF
resource to indicate any element in the set I ∪ B.
An RDF triple is a tuple t = (v1, v2, v3) where v1 ∈

I ∪ B is called the subject, v2 ∈ I is called the predicate
and v3 ∈ I ∪ B ∪ L is called the object. Here, the subject
represents a resource, the predicate represents a relationship
of the resource, and the object represents the value of such
relationship. Given a set of RDF triples S, we will use sub(S),
pred(S) and obj(S) to denote the sets of subjects, predicates,
and objects in S respectively.

There are different data formats to encode a set of RDF
triples, including Notation3 (N3) [12], RDF/XML [17],
N-Triples [14], Turtle [8] and N-Quads [13]. The following
example shows a set of RDF triples encoded using the Turtle
data format.
Example 2.1:

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#> .

2 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
3 @prefix voc: <http://www.example.org/voc/> .
4 @prefix ex: <http://www.example.org/data/> .
5 ex:Tesla_Inc rdf:type voc:Organisation .
6 ex:Tesla_Inc voc:name "Tesla, Inc." .
7 ex:Tesla_Inc voc:creation "2003-07-01"^^xsd:date .
8 ex:Tesla_Inc voc:ceo ex:Elon_Musk .
9 ex:Tesla_Inc voc:location _:b1 .

10 ex:Elon_Musk rdf:type voc:Person .
11 ex:Elon_Musk voc:birthName "Elon Musk" .
12 ex:Elon_Musk voc:age "46"^^xsd:int .
13 _:b1~rdf:type voc:City .
14 _:b1~voc:name "Palo Alto" .
15 _:b1~voc:country _:b2 .
16 _:b2~rdf:type voc:Country .
17 _:b2~voc:name "US" .
18 _:b2~voc:is_location_of ex:Tesla_Inc .

The lines beginning with @prefix are prefix def-
initions and the rest are RDF triples. A prefix def-
inition associates a prefix (e.g. voc) with an IRI
(e.g. http://www.example.org/voc/). Hence, a full
IRI like http://www.example.org/voc/Person
can be abbreviated as a prefixed name voc:Person. We
will use prefix(r) and name(r) to extract the prefix and the
name of an IRI r respectively.
In order to facilitate readability, wewill use prefixed names

instead of full URIs. Moreover, we will assume that there
exists a standard way to transform a full URI into a prefixed
name, and vice versa (e.g. by using an internal index or an
external service like DRPD [42]).

A blank node is usually represented as _: followed by
a blank node label which is a series of name characters
(e.g. _:b1). There are other ways to encode blank nodes
(e.g. []), but we will use the above for simplicity. Given a
blank node b, the function lab(b) returns the label of b.

We will consider two types of literals: a simple literal
which is a Unicode string (e.g. “Elon Musk”), and a
typed literal which consists of a string and a datatype IRI
(e.g. “46”ˆˆxsd:int). Numbers can be unquoted and

VOLUME 8, 2020 86093

R. Angles et al.: Mapping RDF Databases to Property Graph Databases

boolean values may be written as either true or false.
Given a literal l, the function val(l) returns the string of l.

The example shows the six types of valid RDF triples:
(iri, iri, iri) in line 5, (iri, iri, literal) in line 6, (iri, iri, bnode)
in line 9, (bnode, iri, iri) in line 13, (bnode, iri, literal) in
line 14, and (bnode, iri, bnode) in line 15. Any other com-
bination is considered invalid.

A set of RDF triples can be visualized as a graph where the
nodes represent the resources, and the edges represent proper-
ties and values. However, the RDFmodel has a particular fea-
ture: an IRI can be used as an object and predicate in an RDF
graph. For instance, the triple (voc:ceo, rdfs:label,
“Chief Executive Officer”) can be added to the
graph shown in Example 2.1 to include metadata about the
property voc:ceo. It implies that an RDF graph is not
a traditional graph because it allows edges between edges,
and consequently an RDF graph cannot be visualized in a
traditional way. Next, we introduce a formal definition of the
RDF data model which is able to support the above feature.
Definition 5 (RDF Graph): An RDF graph is defined as a

tuple GR = (NR,NL ,EO,ED, αR, αL , βO, βD, δ) where:

• NR is a finite set of nodes representing RDF resources
(i.e. resource nodes divided in IRI nodes and blank
nodes);

• NL is a finite set of nodes representing RDF literals
(i.e. literal nodes), satisfying that NR ∩ NL = ∅;

• EO is a finite set of edges called object property edges;
• ED is a finite set of edges called datatype property
edges,1 satisfying that EO ∩ ED = ∅.;

• αR : NR → I ∪ B is a total one-to-one function that
associates each resource node with a resource identifier
(i.e. either a IRI or a blank node identifier);

• αL : NL → L is a total one-to-one function that
associates each literal node with a single literal;

• βO : EO→ (NR ×NR) is a total function that associates
each object property edge with a pair of resource nodes;

• βD : ED→ (NR ×NL) is a total function that associates
each datatype property edge with a resource node and a
literal node;

• δ: (NR ∪ NL ∪ EO ∪ ED) → I is a partial function that
assigns a resource class label to each node or edge.

Note that the function δ has been defined as being partial
in order to support a partial connection between schema and
data (which is usual in real RDF datasets). However, it is
possible to define the following simple procedure to make the
function δ total: For each resource r ∈ NR, if r /∈ dom(δ) then
assign δ(r) = rdfs:Resource. Therefore, wewill assume
that every resource in an RDF graph defines its resource class.

Concerning the issue about an IRI u occurring as both
resource and property, note that u will occur as resource and
property separately. In such a case, we will have a bipartite
graph. The same applies for blank nodes.

1The terms ‘‘object property’’ and ‘‘datatype property’’ have been taken
from the Web Ontology Language (OWL) [18]

Given a set of RDF triples S, the procedure to create a for-
mal RDF graph GR = (NR,NL ,EO,ED, αR, αL , βO, βD, δ)
from S is defined as follow:
• For every resource r ∈ sub(S), there is a node n ∈ NR
with αR(n) = r ;
– If (r,rdf:type, c) ∈ S then δ(n) = c, else δ(n) =
rdfs:Resource;

• For every literal l ∈ obj(S) ∩ L, there is a node n ∈ NL ;
– If l is a simple literal then αL(n) = l and δ(n) =
xsd:string;

– If l is a typed literal of the formvalueˆˆdatatype
then αL(n) = value and δ(n) = datatype;

• For every triple (s, p, o) ∈ S where o ∈ I ∪ B, there is
an edge e ∈ EO with δ(e) = p and βO(e) = (n, n′), such
that αR(n) = s and αR(n′) = o;

• For every triple (s, p, o) ∈ S where o ∈ L, there is an
edge e ∈ ED with δ(e) = p and βD(e) = (n, n′), such
that αR(n) = s and αL(n′) = o.

For example, the RDF graph obtained from the set of RDF
triples shown in Example 2.1 is defined as follows:

1 NR = {n1, n2, n3, n4},
2 NL = {n5, n6, n7, n8, n9, n10},
3 EO = {e1, e2, e3, e4},
4 ED = {e5, e6, e7, e8, e9, e10},
5 αR(n1) = ex:Tesla_Inc, αR(n2) = ex:Elon_Musk,

αR(n3) = _:b1, αR(n4) = _:b2,
6 αL (n5) = "Tesla, Inc.", αL (n6) = "2003-07-01",

αL (n7) = "Elon Musk", αL (n8) = "46",
αL (n9) = "Palo Alto", αL (n10) = "US",

7 βO(e1) = (n1, n2), βO(e2) = (n1, n3), βO(e3) = (n3, n4),
βO(e4) = (n4, n1),

8 βD(e5) = (n1, n5), βD(e6) = (n1, n6), βD(e7) = (n2, n7),
βD(e8) = (n2, n8), βD(e9) = (n3, n9), βD(e10) = (n4, n10),

9 δ(n1) = voc:Organisation, δ(n2) = voc:Person,
10 δ(n3) = voc:City, δ(n4) = voc:Country
11 δ(n5) = xsd:string, δ(n6) = xsd:date,
12 δ(n7) = xsd:string, δ(n8) = xsd:int,
13 δ(n9) = xsd:string, δ(n10) = xsd:string,
14 δ(e1) = voc:ceo, δ(e2) = voc:location,

δ(e3) = voc:country, δ(e4) = voc:is_location_of,
δ(e5) = voc:name, δ(e6) = voc:creation,
δ(e7) = voc:birthName, δ(e8) = voc:age,
δ(e9) = voc:name, δ(e10) = voc:name.

Additionally, Figure 1 shows a graphical representation of
the RDF graph described above. The IRI nodes are repre-
sented as ellipses, the blank nodes are represented as dotted
ellipses and literal nodes are presented as rectangles. Each
node is labeled with two IRIs: the inner IRI indicates the
resource identifier, and the outer IRI indicates the resource
class of the node. Each edge is labeled with an IRI that
indicates its property class. We use balloons to indicate the
object identifiers.

2) RDF GRAPH SCHEMA
RDF Schema (RDFS) [11] defines a standard vocabulary
(i.e., a set of terms, each having a well-defined meaning)
which enables the description of resource classes and prop-
erty classes. From a database perspective, RDF Schema can
be used to describe the structure of the data in an RDF
database.

86094 VOLUME 8, 2020

R. Angles et al.: Mapping RDF Databases to Property Graph Databases

FIGURE 1. Graphical illustration of an RDF graph.

In order to describe classes of resources and properties,
the RDF Schema vocabulary defines the following terms:
rdfs:Class and rdf:Property represent the classes
of resources, and properties respectively; rdf:type can be
used (as property) to state that a resource is an instance of
a class; rdfs:domain and rdfs:range allow to define
domain resource classes and range domain classes for a prop-
erty, respectively. Note thatrdf: andrdfs: are the prefixes
for RDF and RDFS respectively.

An RDF Schema description consists into a set of RDF
triples, so it can be encoded using RDF data formats. The
following example shows an RDF Schema document which
describes the structure of the data shown in Example 2.1,
using the Turtle data format.
Example 2.2:

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#> .

2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-
schema#> .

3 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
4 @prefix voc: <http://www.example.org/voc/> .
5 voc:Organisation rdf:type rdfs:Class .
6 voc:Person rdf:type rdfs:Class .
7 voc:City rdf:type rdfs:Class .
8 voc:Country rdf:type rdfs:Class .
9 xsd:string rdf:type rdfs:Class .

10 xsd:date rdf:type rdfs:Class .
11 xsd:int rdf:type rdfs:Class .
12 voc:ceo rdf:type rdf:Property .
13 voc:ceo rdfs:domain voc:Organisation .
14 voc:ceo rdfs:range voc:Person .
15 voc:location rdfs:domain voc:Organisation .
16 voc:location rdfs:range voc:City .
17 voc:country rdf:type rdf:Property .
18 voc:country rdfs:domain voc:City .
19 voc:country rdfs:range voc:Country .
20 voc:is_location_of rdf:type rdf:Property .
21 voc:is_location_of rdfs:domain voc:City .
22 voc:is_location_of rdfs:range voc:Organisation .
23 voc:name rdf:type rdf:Property .
24 voc:name rdfs:domain voc:Organisation .

25 voc:name rdfs:domain voc:City .
26 voc:name rdfs:domain voc:Country .
27 voc:name rdfs:range xsd:string .
28 voc:creation rdf:type rdf:Property .
29 voc:creation rdfs:domain voc:Organisation .
30 voc:creation rdfs:range xsd:date .
31 voc:location rdf:type rdf:Property .
32 voc:birthName rdf:type rdf:Property .
33 voc:birthName rdfs:domain voc:Person .
34 voc:birthName rdfs:range xsd:string .
35 voc:age rdf:type rdf:Property .
36 voc:age rdfs:domain voc:Person .
37 voc:age rdfs:range xsd:int .

Note that: a resource class rc is defined by a triple of
the form (rc rdf:type rdfs:Class); a property class
pc is defined by a triple of the form (pc rdf:type
rdf:Property); a triple (pc rdfs:domain rc1)
indicates that the resource class rc1 is part of the domain
of pc (i.e. a resource of class rc1 could have an outgoing
property pc); a triple (pc rdfs:range rc2) indicates that
the resource class rc2 is part of the range of pc (i.e. a resource
of class rc1 could have an incoming property pc).
If the range of a property class pc is a resource class

(defined by the user), then pc is called an object property
(e.g. voc:ceo). If the range is a datatype class, defined
by RDF Schema or another vocabulary, then pc is called
a datatype property (e.g. age). The IRIs xsd:string,
xsd:integer and xsd:dateTime are examples of
datatypes defined by XML Schema [9]. Let IDT ⊂ I be the
set of RDF datatypes.

Note that the RDF schema presented in Example 2.2 pro-
vides a complete description of resource classes and prop-
erty classes. However, in practice, it is possible to find
incomplete or partial RDF schema descriptions. In particular,
a datatype could not be defined as a resource class, and
property could not define its domain or its range.

We will assume that a partial schema can be ‘‘normalized’’
to be a total schema. In this sense, we will use the term
rdfs:Resource2 to complete the definition of proper-
ties without domain or range. For instance, suppose that
our sample RDF Schema does not define the range of the
property class voc:ceo. In such case, we will include
the triple (voc:ceo, rdfs:range, rdfs:Resource) to
complete the definition of voc:ceo.
Now, we introduce the notion of RDF graph schema as a

formal way to represent an RDF schema description. Assume
that IV ⊂ I is the set that includes the RDF Schema
terms rdf:type, rdfs:Class, rdfs:Property,
rdfs:domain and rdfs:range.
Definition 6 (RDF Graph Schema): AnRDFgraph schema

is defined as a tuple SR = (NS ,ES , φ, ϕ) where:
• NS is a finite set of nodes representing resource classes;
• ES is a finite set of edges representing property classes;
• φ : (NS ∪ ES) → I \ IV is a total function that
associates each node or edge with an IRI representing
a class identifier;

2According to the RDF Schema specification [11], rdfs:Resource
denotes the class of everything.

VOLUME 8, 2020 86095

R. Angles et al.: Mapping RDF Databases to Property Graph Databases

FIGURE 2. Graphical illustration of an RDF graph schema.

• ϕ: ES → (NS × NS) is a total function that associates
each property class with a pair of resource classes.

Recall that IDT denotes the set of RDF datatypes. Given
an RDF Schema description D, the procedure to create an
RDF graph schema SR = (NS ,ES , φ, ϕ) from D is given as
follows:

1) Let C = {rc | (rc,rdf:type,rdfs:Class) ∈ D ∨
(pc,rdfs:domain, rc) ∈ D ∨ (pc,rdfs:range,
rc) ∈ D}

2) For each rc ∈ C , we create n ∈ NS with φ(n) = rc
3) For each pair of triples (pc,rdfs:domain, rc1) and

(pc,rdfs:range, rc2) in D, we create e ∈ ES with
φ(e) = pc and ϕ(e) = (n1, n2), satisfying that n1, n2 ∈
NS , φ(n1) = rc1 and φ(n2) = rc2.

Following the above procedure, the RDF schema shown in
Example 2.2 can be formally described as follows:

1 NS = {n1, n2, n3, n4, n5, n6, n7},
2 ES = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10};
3 φ(n1) = {voc:Organisation}, φ(n2) = {voc:Person},

φ(n3) = {voc:City}, φ(n4) = {voc:Country},
φ(n5) = {xsd:string}, φ(n6) = {xsd:date},
φ(n7) = {xsd:int}

4 φ(e1) = {voc:ceo}, φ(e2) = {voc:location},
φ(e3) = {voc:country}, φ(e4) = {voc:is_location_of}
, φ(e5) = {voc:name}, φ(e6) = {voc:creation},
φ(e7) = {voc:birthName}, φ(e8) = {voc:age},
φ(e9) = {voc:name}, φ(e10) = {voc:name},

5 ϕ(e1) = (n1, n2), ϕ(e2) = (n1, n3), ϕ(e3) = (n3, n4),
ϕ(e4) = (n4, n1), ϕ(e5) = (n1, n5), ϕ(e6) = (n1, n6),
ϕ(e7) = (n2, n5), ϕ(e8) = (n2, n7), ϕ(e9) = (n3, n5),
ϕ(e10) = (n4, n5).

Additionally, Figure 2 shows a graphical representation of
the RDF schema graph described above.

Given an RDF graph schema SR = (NS ,ES , φ, ϕ) and an
RDF graph GR = (NR,NL ,EO,ED, αR, αL , βO, βD, δ), we
say that GR is valid with respect to SR, denoted as GR |H SR,
iff:

1) for each r ∈ NR ∪ NL , it applies that there is rc ∈ NS
where δ(r) = φ(rc);

FIGURE 3. Graphical illustration of a property graph.

2) for each e ∈ EO with βO(e) = (n, n′), it applies that
there is pc ∈ ES where δ(e) = φ(pc), ϕ(pc) = (rc, rc′),
δ(n) = φ(rc) and δ(n′) = φ(rc′).

3) for each e ∈ ED with βD(e) = (n, n′), it applies that
there is pc ∈ ES where δ(e) = φ(pc), ϕ(pc) = (rc, rc′),
δ(n) = φ(rc) and δ(n′) = φ(rc′).

Here, condition (1) validates that every resource node is
labeled with a resource class defined by the schema; con-
dition (2) verifies that each object property edge, and the
pairs of resource nodes that it connects, are labeled with the
corresponding resource classes; and condition (3) verifies that
each datatype property edge, and the pairs of nodes that it
connects (i.e. a resource node and a literal node), are labeled
with the corresponding resource classes
Finally, we present the notion of RDF database.
Definition 7 (RDF Database): An RDF database is a pair

(SR,GR) where SR is an RDF graph schema andGR is an RDF
graph satisfying that GR |H SR.

C. PROPERTY GRAPH DATABASES
A Property Graph (PG) is a labeled directed multigraph
whose main characteristic is that nodes and edges can contain
a set (possibly empty) of name-value pairs referred to as
properties. From the point of view of data modeling, each
node represents an entity, each edge represents a relationship
(between two entities), and each property represents a spe-
cific characteristic (of an entity or a relationship).
Figure 3 presents a graphical representation of a PG. The

circles represent nodes, the arrows represent edges, and the
boxes contain the properties for nodes and edges.
Currently, there are no standard definitions for the notions

of PG and PG Schema. However, we present formal defini-
tions that resemble most of the features provided by current
PG database systems.

1) PROPERTY GRAPH
Assume that L is an infinite set of labels (for nodes, edges
and properties), V is an infinite set of (atomic or complex)
values, and T is a finite set of data types (e.g. string, integer,
date, etc.). A value in V will be distinguished as a quoted
string. Given a value v ∈ V, the function type(v) returns the
datatype of v. Given a set S, P+(S) denotes the set of non-
empty subsets of S.
Definition 8 (Property Graph): A Property Graph is

defined as a tuple GP = (N,E,P, 0,ϒ,6,1) where:
• N is a finite set of nodes, E is a finite set of edges, P is a
finite set of properties, andN,E,P are mutually disjoint
sets;

86096 VOLUME 8, 2020

R. Angles et al.: Mapping RDF Databases to Property Graph Databases

FIGURE 4. Graphical illustration of a property graph schema.

• 0 : (N ∪ E)→ L is a total function that associates each
node or edge with a label;

• ϒ : P→ (L×V) is a total function that assigns a label-
value pair to each property.

• 6 : E→ (N×N) is a total function that associates each
edge with a pair of nodes;

• 1 : (N∪E)→ P+(P) is a partial function that associates
a node or edge with a non-empty set of properties,
satisfying that1(o1)∩1(o2) = ∅ for each pair of objects
o1, o2 ∈ dom(1);

The above definition supports PGs with the following fea-
tures: a pair of nodes can have zero or more edges; each
node or edge has a single label; each node or edge can have
zero or more properties; and a node or edge can have the same
label-value pair one or more times.

On the other side, the above definition does not support
multiple labels for nodes or edges. We have two reasons to
justify this restriction. First, this feature is not supported by
all graph database systems. Second, it makes complex the
definition of schema-instance consistency.

Given two nodes n1, n2 ∈ N and an edge e ∈ E , satisfying
that 6(e) = (n1, n2), we will use e = (n1, n2) as a shorthand
representation for e, where n1 and n2 are called the ‘‘source
node’’ and the ‘‘target node’’ of e respectively.
Hence, the formal description of the PG presented in

Figure 3 is given as follows:
1 N = {n1, n2},
2 E = {e1},
3 P = {p1, p2, p3, p4, p5},
4 0(n1) = {Organisation}, 0(n2) = {Person},
5 0(e1) = {ceo},
6 ϒ(p1) = (name,"Tesla, Inc."),

ϒ(p2) = (creation,2003-07-01),
ϒ(p3) = (birthName,"Elon Musk"), ϒ(p4) = (age,46),
ϒ(p5) = (since,2003)

76(e1) = {n1, n2},
81(n1) = {p1, p2}, 1(n2) = {p3, p4}, 1(e1) = {p5}.

2) PROPERTY GRAPH SCHEMA
A Property Graph Schema defines the structure of a PG
database. Specifically, it defines types of nodes, types of
edges, and the properties for such types.

For instance, Figure 4 shows a graphical representation of a
PG schema. The formal definition of PG schema is presented
next.
Definition 9 (Property Graph Schema): A property graph

schema is defined as a tuple SP = (NS ,ES ,PS ,2,5,8,9)
where:
• NS is a finite set of node types;
• ES is a finite set of edge types;

• PS is a finite set of property types;
• 2 : (NS ∪ ES) → L is a total function that assigns a
label to each node or edge;

• 5 : PS → (L × T) is a total function that associates
each property type with a property label and a data type;

• 8 : ES → (NS × NS) is a total function that associates
each edge type with a pair of node types;

• 9 : (NS ∪ ES) → P+(PS) is a partial function that
associates a node or edge type with a non-empty set of
property types, satisfying that 9(o1) ∩ 9(o2) = ∅, for
each pair of objects o1, o2 ∈ dom(9).

Hence, the formal description of the PG schema shown
in Figure 4 is the following:

1 NS = {n1, n2},
2 ES = {e1},
3 PS = {p1, p2, p3, p4, p5},
42(n1) = {Organisation}, 2(n2) = {Person}, 2(e1) = {ceo},
55(p1) = (name,String), 5(p2) = (creation,Date),

5(p3) = (birthName,String), 5(p4) = (age,Integer),
5(p5) = (since,Date),

68(e1) = (n1, n2),
79(n1) = {p1, p2}, 9(n2) = {p3, p4}, 9(e1) = {p5}

Given a PG schema SP = (NS ,ES ,PS ,2,5,8,9) and a
PG GP = (N,E,P, 0,ϒ,6,1), we say that GP is valid with
respect to SP, denoted as GP |H SP, iff:
1) for each n ∈ N, it applies that there is nt ∈ NS

satisfying that:
(a) 0(n) = 2(nt);
(b) for each p ∈ 1(n), there is pt ∈ 9(nt) satisfying

that ϒ(p) = (l, v) and 5(tp) = (l, type(v)).
2) for each e = (n, n′) ∈ E, it applies that there is et ∈ ES

with 8(et) = (nt, nt ′) satisfying that:
(a) 0(e) = 2(et), 0(n) = 2(nt), 0(n′) = 2(nt ′);
(b) for each p′ ∈ 1(e), there is pt ′ ∈ 9(et) satisfying

that ϒ(p′) = (l ′, v′) and 5(pt ′) = (l ′, type(v′)).
Here, condition (1a) validates that every node is labeled

with a node type defined by the schema; condition (1b)
verifies that each node contains the properties defined by its
node type; condition (2a) verifies that each edge, and the pairs
of nodes that it connects, are labeled with an edge type, and
the corresponding node types; and condition (2b) verifies that
each edge contains the properties defined by the schema.

Finally, we present the notion of PG database.
Definition 10 (Property Graph Database): A property

graph databaseDP is a pair (SP,GP) where SP is a PG schema
and GP is a PG satisfying that GP |H SP.

D. RDF DATABASES VERSUS PG DATABASES
Upon comparison of RDF graphs and PGs, we see that both
share the main characteristics of a traditional labeled directed
graph, that is, nodes and edges contain labels, the edges are
directed, andmultiple edges are possible between a given pair
of nodes. However, there are also some differences between
them:
• An RDF graph allows three types of nodes (IRIs, blank
nodes and literals) whereas a PG allows a single type of
node;

VOLUME 8, 2020 86097

R. Angles et al.: Mapping RDF Databases to Property Graph Databases

• Each node or edge in an RDF graph contains just a
single value (i.e. a label), whereas each node or edge
in a PG could contain multiple labels and properties
respectively;

• An RDF graph supports multi-value properties, whereas
a PG usually just support mono-value properties;

• An RDF graph allows to have edges between edges,
a feature which isn’t supported in a PG (by definition);

• A node in an RDF graph could be associated with
zero or more classes or resources, while a node in a PG
usually has a single node type.

In addition to the above structural differences, RDF
Schema gives special semantics to the terms in its vocabulary.
For example, the termsrdf:Statement,rdf:subject,
rdf:predicate and rdf:object can be used to
describe explicitly RDF statements. This feature, called
‘‘reification’’, is not studied in this article as it is rarely used
in practice.

A very interesting feature of both, RDF and PG databases,
is the support for schema-less databases, i.e. the databases
could not have a fixed data structure. In the particular case of
RDF, it is possible to find three types of datasets: datasets
without schema definitions, datasets that merge data and
schema; and datasets that separate schema and instance.

Depending on whether or not the input RDF dataset has
a schema, the database mappings can be classified into two
types: (i) schema-dependent: one that generates a target PG
schema from the input RDF graph schema, and then trans-
forms the RDF graph into a PG; and (ii) schema-independent:
one that creates a generic PG schema (based on a predefined
structure) and then transforms the RDF graph into a PG.
In this paper, we developed these two types of database
mappings.

III. SIMPLE DATABASE MAPPING (SDM)
This section describes the schema-independent database
mapping DM1 which allows to transform an schema-less
RDF database into a schema-less PG database. DM1 is just
composed of an instance mapping which allows to transform
the input RDF graph into a PG graph.

Given an RDF database DR = (∅,GR), we define
the database mapping DM1 = (∅, IM1) such that
DM1(DR) = (∅,GP) where GP = IM1(GR). The instance
mapping IM1 is defined next.

A. INSTANCE MAPPING IM1
The instance mapping IM1 is defined as follows:
Definition 11 (Instance mapping IM1): Let GR =

(NR,NL ,EO,ED, αR, αL , βO, βD, δ) be an RDF graph and
GP = (N,E,P, 0,ϒ,6,1) be a PG. The instance mapping
IM1(GR) = GP is defined as follows:

1) For each r ∈ NR
• There will be n ∈ N with 0(n) = name(δ(r))

2) For each op ∈ EO satisfying that βO(op) = (r, r ′)
where r, r ′ ∈ NR

FIGURE 5. Property graph obtained after applying the instance mapping
IM1 to the RDF graph shown in Figure 1.

• There will be e ∈ E with 0(e) = name(δ(op)) and
6(e) = (n1, n2) where n1, n2 ∈ N correspond to
r, r ′ respectively.

3) For each dp ∈ ED satisfying that βD(dp) = (r, l) where
r ∈ NR and l ∈ NL
• There will be p ∈ P with ϒ(p) =

(name(δ(dp)), αL(l))
• 1(n) = 1(n) ∪ p such that n ∈ N corresponds to
r .

In general terms, the instance mapping IM1 creates PG
nodes from resource nodes, PG properties from datatype
properties, and PG edges from object properties. Nodes,
edges and properties are labeled with the name of the cor-
responding resource class label (defined by the function
δ) or the name of the resource identifier (when function δ is
undefined).
For example, the PG obtained after applying IM1 over the

RDF graph shown in Figure 1 is given as follows:

1 N = {n1, n2, n3, n4},
2 E = {e1, e2, e3, e4},
3 P = {p5, p6, p7, p8, p9, p10},
4 0(n1) = Organisation, 0(n2) = Person, 0(n3) = City,

0(n4) = Country, 0(e1) = ceo, 0(e2) = location,
0(e3) = country, 0(e4) = is_location_of

5 ϒ(p5) = (name,"Tesla, Inc."),
ϒ(p6) = (creation,"2003-07-01"),
ϒ(p7) = (birthName,"Elon_Musk"), ϒ(p8) = (age,"46")
, ϒ(p9) = (name,"Palo Alto"), ϒ(p10) = (name,"US")

66(e1) = {n1, n2}, 6(e2) = {n1, n3}, 6(e3) = {n3, n4},
6(e4) = {n4, n1},

71(n1) = {p5, p6}, 1(n2) = {p7, p8}, 1(n3) = {p9}, 1(n4) = {p10}.

Figure 5 shows a graphical representation of the PG
described above.

B. PROPERTIES OF DM1
In this section we evaluate the properties of the database
mapping DM1, i.e. computability, semantics preservation
and information preservation. Recall thatDM1 just contains
the instance mapping IM1, and the output is a PG database
without RDF graph schema.
Proposition 1: The database mapping DM1 is com-

putable.
It is easy to see that the procedure presented in

Definition 11 can be implemented as an algorithm.

86098 VOLUME 8, 2020

R. Angles et al.: Mapping RDF Databases to Property Graph Databases

Proposition 2: The database mapping DM1 is semantic
preserving.

Note that DM1 assumes that there is no RDF graph
schema, i.e. no schema restrictions are considered. Moreover,
the output PG database does not contain a PG schema. Hence,
it is straightforward to see that DM1 is semantic preserving.
Proposition 3: The database mapping DM1 is not infor-

mation preserving.
Note that the instance mapping IM1 loses multiple pieces

of information from the input RDF graph. In particular,
it extract simple labels from IRIs and blank nodes (e.g. by
removing the namespace part of a IRI). Hence, it is not possi-
ble to define an inverse mapping which is able to reconstruct
all the original information.

Although the database mapping DM1 does not satisfy the
information preservation property, it is a simple method to
transform RDF datasets that contains a merge of data and
schema. In particular, it works well with RDF graphs where
each resource defines its resource class by means of the
rdf:type term.

IV. GENERIC DATABASE MAPPING (GDM)
This section describes the schema-independent database
mappingDM2 which allows to transform a schema-less RDF
database into a complete PG database. DM2 is composed
of a schema mapping SM2 and an instance mapping IM2
such that SM2 generates a ‘‘generic’’ PG schema (always
the same) and IM2 allows to generate a PG graph from the
input RDF graph.

Given an RDF database DR = (∅,GR), we define
the database mapping DM2 = (SM2, IM2) such that
DM2(DR) = (SP,GP) where SP is a generic PG schema
and GP = IM2(GR). The schema mapping SM2 and the
instance mapping IM2 are defined next.

A. GENERIC PROPERTY GRAPH SCHEMA
First we introduce a property graph schema which is able to
model any RDF graph.
Definition 12 (Generic Property Graph Schema): Let S∗ =

(NS ,ES ,PS ,2,5,8,9) be the PG schema defined as
follows:

1 NS = {n1, n2, n3},
2 ES = {e1, e2, e3, e4, e5, e6},
3 PS = {p1, p2, p3, p4, p5, p6},
42(n1) = {Resource}, 2(n2) = {BlankNode},

2(n3) = {Literal},
52(e1) = {ObjectProperty}, 2(e2) = {ObjectProperty},

2(e3) = {ObjectProperty}, 2(e4) = {ObjectProperty},
2(e5) = {DatatypeProperty},
2(e6) = {DatatypeProperty},

65(p1) = (iri,String), 5(p2) = (type,String),
5(p3) = (id,String), 5(p4) = (type,String),
5(p5) = (value,String), 5(p6) = (type,String),
5(p7) = (type,String), 5(p8) = (type,String),
5(p9) = (type,String),

78(e1) = (n1, n1), 8(e2) = (n2, n2), 8(e3) = (n1, n2),
8(e4) = (n2, n1), 8(e5) = (n1, n3), 8(e6) = (n2, n3),

89(n1) = {p1, p2}, 9(n2) = {p3, p4}, 9(n3) = {p5, p6},
99(e1) = {p7}, 9(e2) = {p8}, 9(e3) = {p9}.

FIGURE 6. A generic property graph schema.

In the above definition: the node type Resource will be
used to represent RDF resources, the node type Literal
will be used to represent RDF literals, the edge type
ObjectProperty allows to represent object properties
(i.e. relationships between RDF resources), and the edge type
DatatypeProperty allows representing datatype proper-
ties (i.e. relationships between an RDF resource an a literal).
Figure 6 shows a graphical representation of the generic PG
schema.

B. INSTANCE MAPPING IM2
Now, we define the instance mapping IM2 which takes an
RDF graph and produces a PG following the restrictions
established by the generic PG schema defined above.
Definition 13 (Instance mapping IM2): Let GR =

(NR,NL ,EO,ED, αR, αL , βO, βD, δ) be an RDF graph and
GP = (N,E,P, 0,ϒ,6,1) be a PG. The instance mapping
IM2(GR) = GP is defined as follows:
1) For each r ∈ NR

• There will be n ∈ N with 0(n) = Resource
• There will be p ∈ P
• If αR(r) ∈ I then ϒ(p) = (iri, αR(r))
• If αR(r) ∈ B then ϒ(p) = (id, αR(r))
• There will be p′ ∈ P with ϒ(p′) = (type, δ(r))
• 1(n) = {p, p′}

2) For each l ∈ NL
• There will be n ∈ N with 0(n) = Literal
• There will be p ∈ P with ϒ(p) = (value, αL(l))
• There will be p′ ∈ P with ϒ(p′) = (type, δ(l))
• 1(n) = {p, p′}

3) For each op ∈ EO satisfying that βO(op) = (r1, r2)
where r1, r2 ∈ NR
• There will be e ∈ E with 0(e) =

ObjectProperty, and 6(e) = (n1, n2) where
n1, n2 ∈ N correspond to r1, r2 ∈ NR respectively

• There will be p ∈ P with ϒ(p) = (type, δ(op))
• 1(e) = {p}

4) For each dp ∈ ED satisfying that βD(dp) = (r, l) where
r ∈ NR and l ∈ NL

VOLUME 8, 2020 86099

R. Angles et al.: Mapping RDF Databases to Property Graph Databases

• There will be e ∈ E with 0(e) =

DatatypeProperty, and 6(e) = (n1, n2)
where n1, n2 ∈ N correspond to r and l respec-
tively

• There will be p ∈ P with ϒ(p) = (type, δ(dp))
• 1(e) = {p}

According to the above definition, the instance mapping
IM2 creates PG nodes from resource nodes and literal nodes,
and PG edges from datatype properties and object proper-
ties. The property type is used to maintain resource class
identifiers and RDF datatypes. The property iri is used to
store the IRI of RDF resources and properties. The property
value is used to maintain a literal value.
For example, the PG obtained after applying IM2 over the

RDF graph shown in Figure 1 is given as follows:
1 N = {n1, . . . , n10},
2 E = {e1, . . . , e10},
3 P = {p1, . . . , p30},
4 0(n1) = Resource, ϒ(p1) = (iri,"ex:Tesla_Inc"),

ϒ(p2) = (type,"voc:Organisation"), 1(n1) = {p1, p2},
5 0(n2) = Resource, ϒ(p3) = (iri,"ex:Elon_Musk"),

ϒ(p4) = (type,"voc:Person"), 1(n2) = {p3, p4},
6 0(n3) = BlankNode, ϒ(p5) = (id,"_:b1"),

ϒ(p6) = (type,"voc:City"), 1(n3) = {p4, p5},
7 0(n4) = BlankNode, ϒ(p7) = (id,"_:b2"),

ϒ(p8) = (type,"voc:City"), 1(n4) = {p6, p7},
8 0(n5) = Literal, ϒ(p9) = (value,"Tesla, Inc."),

ϒ(p10) = (type,"xsd:string"), 1(n5) = {p9, p10},
9 0(n6) = Literal, ϒ(p11) = (value,"2003-07-01"),

ϒ(p12) = (type,"xsd:date"), 1(n6) = {p11, p12},
10 0(n7) = {Literal}, ϒ(p13) = (value,"Elon Musk"),

ϒ(p14) = (type,"xsd:string"), 1(n7) = {p13, p14},
11 0(n8) = {Literal}, ϒ(p15) = (value,"46"),

ϒ(p16) = (type,"xsd:int"), 1(n8) = {p15, p16},
12 0(n9) = {Literal}, ϒ(p17) = (value,"Palo Alto"),

ϒ(p18) = (type,"xsd:string"), 1(n9) = {p17, p18},
13 0(n10) = {Literal}, ϒ(p19) = (value,"US"),

ϒ(p20) = (type,"xsd:string"), 1(n10) = {p19, p20},
14 0(e1) = ObjectProperty, 6(e1) = {n1, n2},

ϒ(p21) = (type,"voc:ceo"), 1(e1) = {p21},
15 0(e2) = ObjectProperty, 6(e2) = {n1, n3},

ϒ(p22) = (type,"voc:location"), 1(e2) = {p22},
16 0(e3) = ObjectProperty, 6(e3) = {n3, n4},

ϒ(p23) = (type,"voc:country"), 1(e3) = {p23},
17 0(e4) = ObjectProperty, 6(e4) = {n3, n4},

ϒ(p24) = (type,"voc:is_location_of"), 1(e4) = {p24},
18 0(e5) = DatatypeProperty, 6(e5) = {n3, n5},

ϒ(p25) = (type,"voc:name"), 1(e5) = {p25},
19 0(e6) = DatatypeProperty, 6(e6) = {n1, n6},

ϒ(p26) = (type,"voc:creation"), 1(e6) = {p26},
20 0(e7) = DatatypeProperty, 6(e7) = {n2, n7},

ϒ(p27) = (type,"voc:birthName"), 1(e7) = {p27},
21 0(e8) = DatatypeProperty, 6(e8) = {n2, n8},

ϒ(p28) = (type,"voc:age"), 1(e8) = {p28},
22 0(e9) = DatatypeProperty, 6(e9) = {n3, n9},

ϒ(p29) = (type,"voc:name"), 1(e9) = {p29},
23 0(e10) = DatatypeProperty, 6(e10) = {n4, n10},

ϒ(p30) = (type,"voc:name"), 1(e10) = {p30}.

Figure 7 shows a graphical representation of the PG
described above.

C. PROPERTIES OF DM2
In this section we evaluate the properties of the database
mapping DM2. Recall that DM2 is a formed by the schema
mapping SM2 and the instance mapping IM2, where SM2
always creates a generic PG schema S∗.

Proposition 4: The databasemappingDM2 is computable.
It is not difficult to see that an algorithm can be created

from the description of the instancemapping IM2, presented
in Definition 13.
Lemma 1: The database mapping DM2 is semantics

preserving.
It is straightforward to see (by definition) that any PG graph

created with the instance mapping IM2 will be valid with
respect to the generic PG schema S∗.
Theorem 1: The database mapping DM2 is information

preserving.
In order to prove that DM2 is information preserving,

we need to provide a database mapping DM−1
2 which

allows to transform a PG database into an RDF database,
and show that for every RDF database DR, it applies that
DR = DM−1

2 (DM2(DR).
Recalling that the objective of this section is to provide a

schema-independent database mapping, we will assume that
for any RDF databaseDR = (SR,GR), the RDF graph schema
SR is null or irrelevant to validate GR. Hence, we just define
an instance mapping IM−1

2 which allows to transform a PG
graph into an RDF database, such that for every RDF graph
GR, it must satisfy that GR = IM−1

2 (IM2(GR)).
Definition 14 (Instance mapping IM−1

2): Let GP =

(N,E,P, 0,ϒ,6,1) be a property graph and GR =

(NR,NL ,EO,ED, αR, αL , βO, βD, δ) be an RDF graph. The
instance mapping IM−1

2 (GP) = GR is defined as follows:

1) For each n ∈ N satisfying that 0(n) = Resource,
p1, p2 ∈ 1(n), ϒ(p1) = (iri, v1) and ϒ(p2) =
(type, v2), then there will be r ∈ NR with αR(r) = v1
and δ(r) = v2

2) For each n ∈ N satisfying that 0(n) = BlankNode,
p1, p2 ∈ 1(n), ϒ(p1) = (id, v1) and ϒ(p2) =
(type, v2), then there will be r ∈ NR with αR(r) = v1
and δ(r) = v2

3) For each n ∈ N satisfying that 0(n) = Literal,
p1, p2 ∈ 1(n), ϒ(p1) = (value, v1) and ϒ(p2) =
(type, v2), then there will be r ∈ NL with αL(r) = v1
and δ(r) = v2

4) For each e ∈ E satisfying that 0(e) =

ObjectProperty, p ∈ 1(e), ϒ(p) = (type, v),
6(e) = (n1, n2), then there will be op ∈ EO with
δ(op) = v, βO(op) = (r1, r2) where r1 ∈ NR
corresponds to n1 ∈ N, and r2 ∈ NR corresponds to
n2 ∈ N

5) For each e ∈ E satisfying that 0(e) =

DatatypeProperty, p ∈ 1(e), ϒ(p) = (type, v),
6(e) = (n1, n2), then there will be dp ∈ ED with
δ(dp) = v, βD(dp) = (r1, r2) where r1 ∈ NR
corresponds to n1 ∈ N, and r2 ∈ NL corresponds to
n2 ∈ N

Hence, the above method defines that for each node
labeled with Resource or BlankNode is transformed
into a resource node, each node labeled with Literal
is transformed into a literal node, each edge labeled with

86100 VOLUME 8, 2020

R. Angles et al.: Mapping RDF Databases to Property Graph Databases

FIGURE 7. Property graph obtained after applying the instance mapping IM2 to the RDF graph shown in figure 1.

ObjectProperty is transformed into a resource-resource
edge, and each edge labeled with DatatypeProperty
is transformed into a resource-literal edge. Additionally,
the property iri is used to recover the original IRI identifier
for Resource nodes, the property id is used to recover the
original identifier for BlankNode nodes, and the property
type allows us to recover the IRI identifier of the resource
class associated to each node or edge.

It is not difficult to verify that for any RDF graph GR,
we can produce a PG graph GP = SM3(GR), and then
recover GR by using IM−1

2 (GP).

V. COMPLETE DATABASE MAPPING (CDM)
This section describes the schema-dependent database map-
ping DM3 which allows to transform a complete RDF
database into a complete PG database. DM3 is composed
of a schema mapping SM3 and an instance mapping IM3
such that SM3 generates a PG schema from the input RDF
graph schema, and IM3 generates a PG graph from the input
RDF graph.

Recall that IDT is the set of IRIs referencing RDF
datatypes, and T is the set of PG datatypes. Assume that
there is a total function f : IDT → T which maps RDF
datatypes into PG datatypes. Additionally, assume that f −1

is the inverse function of f , i.e. f −1 maps PG datatypes into
RDF datatypes.

Given an RDF database DR = (SR,GR), we define
the database mapping DM3 = (SM3, IM3) such that

DM3(DR) = (SP,GP) where SP = SM3(SR) and GP =
IM3(GR). The schemamappingSM3 and the instancemap-
ping IM3 are defined next.

A. SCHEMA MAPPING SM3
We define a schema mapping SM3 which takes an RDF
graph schema as input and returns a PG Schema as output.
Definition 15 (Schema Mapping SM3): Let SR =

(NS ,ES , φ, ϕ) be an RDF schema and SP = (NS ,ES ,PS ,2,
5,8,9) be a PG schema. The schemamappingSM3(SR) =
SP is defined as follows:

1) For each rc ∈ NS satisfying that φ(rc) /∈ IDT
• There will be nt ∈ NS with 2(nt) = φ(rc)

2) For each pc ∈ ES satisfying that ϕ(pc) = (rc1, rc2)

• If φ(rc2) ∈ IDT then

– There will be pt ∈ PS with 5(pt) =
(φ(pc), f (φ(rc2))), 9(nt) = 9(nt) ∪ pt where
nt ∈ NS corresponds to rc1 ∈ NS .

• If φ(rc2) /∈ IDT then

– There will be et ∈ ES with 2(et) = φ(pc),
8(et) = (nt1, nt2) where nt1, nt2 ∈ NS corre-
spond to rc1, rc2 ∈ NS respectively.

Hence, the schema mapping SM3 creates a node type
for each resource type (with exception of RDF data types);,
creates a property type for each object property, and creates
an edge type for each value property.

VOLUME 8, 2020 86101

R. Angles et al.: Mapping RDF Databases to Property Graph Databases

Assume that the function f is defined by the follow-
ing datatype assignments: f (xsd:string) = String,
f (xsd:int) = Integer and f (xsd:date) = Date.
Hence, the PG schema obtained from the RDF graph schema
shown in Figure 2 is given as follows:

1 NS = {n1, n2, n3, n4},
2 ES = {e1, e2, e3, e4},
3 PS = {p5, p6, p7, p8, p9, p10},
42(n1) = voc:Organisation, 2(n2) = voc:Person,

2(n3) = voc:City, 2(n4) = voc:Country,
52(e1) = voc:ceo, 2(e2) = voc:location,

2(e3) = voc:country, 2(e4) = voc:is_location_of,
65(p5) = (voc:name,String), 5(p6) = (voc:creation,Date),

5(p7) = (voc:birthName,String),
5(p8) = (voc:age,Integer),
5(p9) = (voc:name,String),
5(p10) = (voc:name,String),

78(e1) = (n1, n2), 8(e2) = (n1, n3), 8(e3) = (n3, n4),
88(e4) = (n4, n1),
99(n1) = {p5, p6}, 9(n2) = {p7, p8}, 9(n3) = {p9}, 9(n4) = {p10}.

B. INSTANCE MAPPING IM3
Now, we define the instance mapping IM3 which takes an
RDF graph as input and returns a PG as output.
Definition 16 (Instance Mapping IM3): Let GR =

(NR,NL ,EO,ED, αR, αL , βO, βD, δ) be an RDF graph and
GP = (N,E,P, 0,ϒ,6,1) be a PG. The instance mapping
IM3(GR) = GP is defined as follows:

1) For each r ∈ NR
• There will be n ∈ N with 0(n) = δ(r)
• There will be p ∈ P
• If αR(r) ∈ I then ϒ(p) = (iri, αR(r))
• If αR(r) ∈ B then ϒ(p) = (id, αR(r))
• 1(n) = {p}.

2) For each op ∈ EO satisfying that βO(op) = (r1, r2)
• There will be e ∈ E with 0(e) = δ(op), 6(e) =
(n1, n2) where n1, n2 ∈ N correspond to r1, r2 ∈
NR respectively.

3) For each dp ∈ ED satisfying that βD(dp) = (r1, r2)
• There will be p ∈ P with ϒ(p) = (δ(dp), αL(r2)),
1(n) = 1(n) ∪ {p} where n ∈ N corresponds to
r1 ∈ NR.

According to the above definition, the instance mapping
IM3 creates a node in GR for each resource node, creates
a property in GR for each datatype property, and creates an
edge in GR for each object property.
For example, the PG obtained after applying IM3 over the

RDF graph shown in Figure 1 is given as follows:

1 N = {n1, n2, n33, n4},
2 E = {e1, e2, e3, e4},
3 P = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10},
4 0(n1) = voc:Organisation, 0(n2) = voc:Person,
5 0(n3) = voc:City, 0(n4) = voc:Country,
6 0(e1) = voc:ceo, 0(e2) = voc:location,

0(e3) = voc:country, 0(e4) = voc:is_location_of,
7 ϒ(p1) = (iri,"ex:Tesla_Inc"),

ϒ(p2) = (iri,"ex:Elon_Musk"), ϒ(p3) = (id,"_:b1"),
ϒ(p4) = (id,"_:b2"),
ϒ(p5) = (voc:name,"Tesla, Inc."),
ϒ(p6) = (voc:creation,"2003-07-01"),

FIGURE 8. Property graph obtained after applying the instance mapping
IM3 to the RDF graph shown in Figure 1.

ϒ(p7) = (voc:birthName,"Elon Musk"),
ϒ(p8) = (voc:age,"46"),
ϒ(p9) = (voc:name,"Palo Alto"),
ϒ(p10) = (voc:name,"US")

86(e1) = {n1, n2}, 6(e2) = {n1, n3}, 6(e3) = {n3, n4},
6(e4) = {n4, n1},

91(n1) = {p1, p5, p6}, 1(n2) = {p2, p7, p8}, 1(n3) = {p3, p9},
1(n4) = {p4, p10}.

Figure 8 shows a graphical representation of the PG
described above.

C. PROPERTIES OF DM3
In this section we will evaluate the properties of the database
mapping DM3. Recall that DM3 is formed by the schema
mapping SM3 and the instance mapping IM3.
Proposition 5: The database mapping DM3 is com-

putable.
It is straightforward to see that Definition 15 and Defini-

tion 16 can be transformed into algorithms to compute SM3
and IM3 respectively.
Lemma 2: The database mapping DM3 is semantics

preserving.
Note that the schema mapping SM3 and the instance

mapping IM3 have been designed to create a PG database
that maintains the restrictions defined by the source RDF
database. On one side, the schema mapping SM3 allows
transforming the structural and semantic restrictions from the
RDF graph schema to the PG schema. On the other side, any
PG generated by the instance mapping IM3 will be valid
with respect to the generated PG schema.

The following facts support the semantics preservation
property of DM3:
• We provide a procedure to create a complete RDF graph
schema SR from a set of RDF triples describing an RDF
schema, i.e. each property defines its domain and range
resource classes.

• We provide a procedure to create an RDF graphGR from
a set of RDF triples, satisfying that every node and edge
in GR is associated with a resource class; it allows a
complete connection between the RDF instance and the
RDF schema.

• The schema mapping SM3 creates a node type for
each user-defined resource type, a property type for each
datatype property, and an edge for each object property.

86102 VOLUME 8, 2020

R. Angles et al.: Mapping RDF Databases to Property Graph Databases

• Similarly, the instance mapping IM3 creates a node for
each resource, a property for each resource-literal edge,
and an edge for each resource-resource edge.

Theorem 2: The database mapping DM3 is information
preserving.

In order to prove that DM3 is information preserv-
ing, we will define a database mapping DM−1

3 =

(SM−1
3 , IM−1

3) which allows to transform a PG database
into an RDF database. The inverse mapping DM−1

3 must
satisfy that D = DM−1

3 (DM3(D)) for any RDF database D.
Next we define the schema mapping SM−1

3 and the instance
mapping IM−1

3 .
Definition 17 (Schema mapping SM−1

3): Let SP =

(NS ,ES ,PS ,2,5,8,9) be a PG schema and SR =

(NS ,ES , φ, ϕ) be an RDF schema. The schema mapping
SM−1

3 (SR) = SP is defined as follows:

• Let C = {n | n ∈ range(2)} ∪ {n = f −1(t) | (u, t) ∈
range(5)}

• Letω : C → NS be a function that maps IRIs to resource
classes

• For each n ∈ C
– There will be rc ∈ NS with φ(rc) = n
– ω(n) = rc

• For each et ∈ ES with 8(et) = (nt1, nt2)
– There will be pc ∈ ES with φ(pc) = 2(et) and
ϕ(pc) = (ω(nt1), ω(nt2))

• For each nt ∈ NS

– For each pt ∈ 9(nt) with 8(pt) = (n, t)
∗ There will be pc ∈ ES with phi(pc) = n and
ϕ(pc) = (ω(nt), ω(f −1(t)))

In general terms, the schema mapping SM−1
3 creates a

resource class for each node type, an object property for
each edge type, and a datatype property for each property
type. Given a PG schema SP = SM3(SR), the schema map-
ping SM−1

3 allows to ‘‘recover’’ all the schema constraints
defined by SR, i.e SM−1

3 (SP) = SR.
An issue of SM−1

3 , is the existence of RDF datatypes
which are not supported by PG databases. For example,
rdfs:Literal has no equivalent datatype in PG database
systems. The solution to this issue is to find a one-to-one
correspondence between RDF datatypes and PG datatypes.
Definition 18 (Instance mapping IM−1

3): Let GP =

(N,E,P, 0,ϒ,6,1) be a property graph and GR =

(NR,NL ,EO,ED, αR, αL , βO, βD, δ) be an RDF graph. The
instance mapping IM−1

3 (GP) = GR is defined as follows:
1) For each n ∈ N, there will be r ∈ NR where

a) αR(r) = v such that p ∈ 1(n) and ϒ(p) =
(iri, v) or ϒ(p) = (id, v)

b) δ(r) = 0(n)
c) For each p ∈ 1(n) satisfying that ϒ(p) =

(lab, val) and lab /∈ {iri,id}, there will be
l ∈ NL and dp ∈ ED with αL(l) = val, δ(l) =
f −1(type(val)), δ(dp) = lab and β(dp) = (r, l)

2) For each e ∈ E where 6(e) = (n1, n2), there will be
op ∈ EO with δ(op) = 0(e) and β(op) = (r1, r2) such
that r1, r2 correspond to n1, n2 respectively.

Hence, the above method defines that each node in GP is
transformed into a resource node in GR, each property in GP

is transformed into a datatype property in GR, and each edge
in GP is transformed into an object property in GR. Given a
PG GP = IM3(GR), the instance mapping IM−1

3 allows to
‘‘recover’’ all the data in GR, i.e IM−1

3 (GP) = GR.
Note that each RDF graph produced by the instance map-

ping IM−1
3 will be valid with respect to the schema produced

with the corresponding schema mapping SM−1
3 . Hence, any

RDF database DR can be transformed into a PG database
by using the database mapping DM(DR), and DR could be
recovered by using the database mapping DM−1

3 .

VI. EXPERIMENTAL EVALUATION
The objective of our experimental evaluation is to examine
the performance and scalability of the database mappings
presented in this work. This section includes a description of
the implementation, the evaluation methodology, the experi-
mental results, and the corresponding discussion.

A. IMPLEMENTATION
We have developed a java application called rdf2pg which
implements the mappings described in this article. The
source code and the executable jar file of rdf2pg can
be downloaded from Github (https://github.com/
renzoar/rdf2pg). The tool can be executed in command
line by using an expression with the structure

java -jar rdf2pg.jar <m> <i> <s>

where <m> indicates the database mapping (-sdm = sim-
ple database mapping, -gdm = generic database mapping,
-cdm = complete databasemapping),<i> indicates the input
instance RDF graph file, and <s> indicates the input RDF
schema file (in case of using -gdm or -cdm).

The output of the simple database mapping is a file encod-
ing a PG. In addition, the generic and the complete instance
mappings produce a second file containing the PG schema.
The current implementation uses the YARS-PG [40] data
format for both output files.

Therdf2pgAPI includes an interface namedPGWriter
which can be implemented to support other data for-
mats. The use of PGWriter is very simple as it pro-
vides the methods WriteNode(PGNode node) and
WriteEdge(PGEdge edge) which should be imple-
mented with the corresponding instructions to write nodes
and edges in the output data format.

In order to support the processing of large RDF data files,
rdf2pg uses the StreamRDF class provided by Apache
Jena. Additionally, rdf2pg implements two methods for
writing the output file: a memory-based method which cre-
ates a PG object (which follows the definition presented in
Section II-C.1); and a disk-based method which writes the
output by using a minimal set of structures.

VOLUME 8, 2020 86103

https://github.com/renzoar/rdf2pg
https://github.com/renzoar/rdf2pg

R. Angles et al.: Mapping RDF Databases to Property Graph Databases

TABLE 1. Datasets used in the experimental evaluation.

TABLE 2. RDF Graphs used in the experimental evaluation.

Additionally, we have developed a Java application called
rdfs-processor which provides three functionalities:
analysis of an RDF Schema file to obtain basic information
(i.e. the number of resource classes, number of property
classes, and number of datatypes); normalization of an RDF
Schema, in the case of incomplete definitions (e.g. empty
domains); and schema discovery from an RDF data file.

The functionality of schema discovery is very relevant for
this paper because most of the available RDF datasets do
not provide an RDF Schema file. Our method for schema
discovery follows the approach described in [31]. In general
terms, the method reads the set of RDF triples two times:
in the first pass, it identifies resource classes and property
classes; in the second pass, it determines the domain and
range for each property class. The output is an RDF file
containing a basic description of the RDF Schema by means
of the terms rdf:type, rdfs:Class, rdf:Property,
rdfs:domain and rdfs:range. The source code of
the rdfs-processor is available in Github (https://
github.com/renzoar/rdfs-processor).

B. METHODOLOGY AND EXPERIMENTAL SETUP
The experimental evaluation consists of a series of experi-
ments that combine three variables: database mapping, data
source, RDF graph size, and processing power. We evaluate
the three database mappings defined in this paper: simple
mapping, generic mapping, and complete mapping.

We consider four sources of RDF data whose characteris-
tics (domain, nature, and structure) are shown in Table 1. We
use nine RDF graphs (obtained from the data sources) whose
size3 goes from 328 triples to 41,191,235 triples, as shown
in Table 2.

3The size of an RDF graph is expressed in terms of the number of triples.
Note that the disk space occupied by a set of triples depends on the RDF data
format used [27].

TABLE 3. Virtual machines (google cloud platform) used in the
experimental evaluation.

The processing power variable indicates the use of
machines with different characteristics in terms of hardware.
In this case, we used four virtual machines hosted in the
Google Cloud Platform, having a varying number of CPUs
(Intel Skylake), main/primary memory size (RAM), and sec-
ondary memory size (SSD). The technical specification of
each machine is shown in Table 3. All the machines worked
with Debian GNU/Linux 9 (amd64 built on 20200309) as
the operating system and Java OpenJDK 1.8.0_242 (64-Bit)
without a graphic environment.

Based on the above variables, we evaluated the database
mappings in terms of performance and scalability. The perfor-
mance is measured as the running time (or runtime) required
to execute a mapping and construct the corresponding out-
put database (schema graph and instance graph). To do
this, the rdf2pg application uses the built-in Java function
System.currentTimeMillis to register the runtime.
The objective is to determine the computational complexity
of the mappings in practice.

Eachmapping is evaluated under two notions of scalability.
Former, we measure the scalability with respect to the size
of the input data (i.e. the number of triples). The objective
is to determine the behavior of the mappings with RDF
graphs of different sizes. Later, we analyze the scalability
with respect to the computational resources. The objective is
to determine the dependency of each mapping with respect to
the hardware.

C. EXPERIMENTAL RESULTS
Our experimental evaluation begins with the extraction of
the RDF Schema for each RDF graph. This task was per-
formed by using the rdfs-processor tool described in
Section VI-A. Table 4 shows information about the corre-
sponding RDF Schemas. We can observe that: the SP2B
graphs do not change too much in terms of the number of
classes and properties; the number of classes in GeoData and
BSBM is larger than the number of properties; a small number
of datatypes are defined in the graphs.

86104 VOLUME 8, 2020

https://github.com/renzoar/rdfs-processor
https://github.com/renzoar/rdfs-processor

R. Angles et al.: Mapping RDF Databases to Property Graph Databases

TABLE 4. RDF schemas used in the experimental evaluation. This table
shows the number of resource classes, property classes, and datatype
definitions.

TABLE 5. Runtimes (in milliseconds) for the simple database mapping.
Undefined runtimes are represented with ‘‘?’’.

TABLE 6. Runtimes (in milliseconds) for the generic database mapping.
Undefined runtimes are represented with ‘‘?’’.

Once we had the RDF Schema files for each dataset,
we executed the experiments in the virtual machines. Every
execution of the rdf2pg application was configured to use
the maximum amount of primary memory allowed by the
machine. To do this, we use the -Xmx parameter defined by
Java. Table 5, Table 6 and Table 7 show the runtimes for
the simple mapping, the generic mapping and the complete
mapping respectively.

In general terms, we can observe that the mappings worked
well with most of the graphs (i.e. G1 to G7). However, there
were problems to complete the task for graphs G8 and G9,
running on virtual machines VM1 and VM2. Specifically,
the execution of rdf2pg produced an error of ‘‘insufficient
memory for the Java Runtime Environment’’. Hence, our
current implementation has a restriction to process large input
graphs with small-memory machines.

The above problem is related to the main memory (RAM)
required to manage the intermediate objects used by the map-
pings. Being more specific, the mappings create a HashMap

TABLE 7. Runtimes (in milliseconds) for the complete database mapping.
Undefined runtimes are represented with ‘‘?’’.

TABLE 8. Size (in bytes) of the output files produced during the
experimental evaluation of the database mappings (SDM, GDM and
CDM). PG and PGS mean property graph and property graph schema
respectively.

to store all the nodes and their properties, and such a structure
could be very large for some graphs. Note that the number
of nodes is not directly related to the number of triples. For
example, we observed that the number of nodes generated
for G8 was higher than G9, even when G9 has more triples
than G8. It explains why the simple mapping was able to pro-
cess G9, but it was not able to process G8, both using VM2.

In order to analyze the scalability of the mappings with
respect to the size of the input data, we selected the runtimes
obtained with VM4. As shown in Figure 9, the execution time
of all the mappings grows up in concordance with the size of
the input graphs, i.e., the larger the size of the graph, the larger
the runtime. Note also that the runtimes of the mappings are
under the baseline defined by the graph sizes. Hence, we can
conclude that the complexity of the mappings is linear with
respect to the size of the input.

In order to analyze the scalability of the mappings with
respect to the computational power, we prepare a plot for each
mapping showing the runtimes for all the virtual machines
(see Figures 10, 11 and 12). The plots show that the runtimes
decrease for VM1, VM2, andVM3; however, the runtimes for
VM3 and VM4 are not so different. The latter implies that
there is a threshold in which the computational power does
not reduce the execution time of the mapping.

As a general conclusion, we can say that the three database
mappings presented in this work have an efficient implemen-
tation to process large datasets and work under middle-size
computational resources.

VOLUME 8, 2020 86105

R. Angles et al.: Mapping RDF Databases to Property Graph Databases

FIGURE 9. Scalability of the database mappings with respect to the size
of the input data. The X-axis has graph sizes and the Y-axis has runtimes
(in log scale). The ‘‘Base’’ line indicates the sizes of the input graphs in
the log scale.

FIGURE 10. Scalability of the simple database mapping with respect to
the hardware. The X-axis has virtual machines and the Y-axis has
runtimes (in log scale).

All the input and output files described in the above exper-
iments are available in Figshare [6].

D. INTEROPERABILITY IN PRACTICE
In order to show the practical use of the database mappings
proposed in this article, we conducted a complete ETL pro-
cess that involves: Extracting RDF data from an RDF dataset;

FIGURE 11. Scalability of the generic database mapping with respect to
the hardware. The X-axis has virtual machines and the Y-axis has
runtimes (in log scale).

FIGURE 12. Scalability of the complete database mapping with respect to
the hardware. The X-axis has virtual machines and the Y-axis has
runtimes (in log scale).

Transforming the extracted RDF data to PG data, and Loading
the transformed data into a property graph database system.
Due to its popularity and availability of features for data
loading, we selected Neo4j as the target database system.

The main issue in this experiment is the configuration of
rdf2pg to generate and encode property graphs into a data
format that can be consumed by the Neo4j system. To do this,

86106 VOLUME 8, 2020

R. Angles et al.: Mapping RDF Databases to Property Graph Databases

FIGURE 13. Graphical representation of the property graph produced by applying the simple database mapping over the RDF graph G2.

we created the Neo4jWriter class as an implementation of the
PGWriter interface provided by rdf2pg. The Neo4jWriter
class allows exporting a property graph as a set of Cypher
instructions to create nodes and edges. For example, the prop-
erty graph shown in Figure 5 will be exported as follows:

1 CREATE (n15:City {name:’Palo Alto’})
2 CREATE (n12:Person {birthName:’Elon Musk’,age

:’46’})
3 CREATE (n33:Country {name:’US’})
4 CREATE (n1:Organisation {name:’Tesla, Inc.’,

creation:’2003-07-01’})
5 CREATE (n1)-[e5:ceo]->(n12)

6 CREATE (n1)-[e6:location]->(n15)
7 CREATE (n15)-[e7:country]->(n33)
8 CREATE (n33)-[e8:is_location_of]->(n1)

To demonstrate the validity of our mappings, we used
the property graph obtained by applying the simple database
mapping over the RDF graphG2, i.e. the SP2Bfile containing
1,285 triples. The output file containing Cypher instructions
was loaded in Neo4j Desktop 1.2.3 by using the browser-
based user interface. The loading process took 7 ms, result-
ing in a property graph with 270 nodes, 348 relationships,
677 properties, and 260 labels. A graphical representation of

VOLUME 8, 2020 86107

R. Angles et al.: Mapping RDF Databases to Property Graph Databases

TABLE 9. Summary of the related work addressing data interoperability between RDF and property graphs. The lack of information or evidence is
denoted as ‘‘?’’.

the loaded property graph, obtained from the Neo4j browser,
is shown in Figure 13.

The above experiment was repeated for the generic and
the complete database mappings. The generic mapping pro-
duced, after 55 ms, a property graph containing 949 nodes,
1285 relationships, 2911 properties, and 949 labels. The com-
plete mapping took 8ms, producing a property graph with the
same number of elements produced by the simple mapping.

All the information related to this data loading experiment,
including the output files and the charts of the property
graphs, are available in Figshare [6].

VII. RELATED WORK
In this section we present the related work that targets the
interoperability issue between RDF and property graphs. We
group the efforts based on the direction of the mapping, i.e.
RDF→ PG and PG→ PG.

A. FROM RDF TO PROPERTY GRAPHS
Hartig and Thompson [20] proposes two formal transforma-
tions between RDF? and PGs. RDF? is a conceptual extension
of RDF which is based on reification. The first transforma-
tion maps any RDF triple as an edge in the resulting PG.
Each node has the ‘‘kind’’ property to describe the node
type (e.g. IRI). The second transformation distinguishes data
and object properties. The former is transformed into node
properties and latter into edges of a PG. The shortcoming of
this approach is that RDF? – (i) does not support mapping
an RDF graph schema, and (ii) adds an extra step of an
intermediate mapping and; (iii) isn’t supported bymajor RDF
stores.

In S2X, Schätzle et al. [33] propose a GraphX-specific
RDF-PG transformation. The mapping uses attribute label to
store the node and edge identifiers, i.e. each triple t = (s, p, o)
is represented using two vertices vs, v0, an edge (vs, vo) and
labels vs.label = s, vo.label = o, (vs, vo).label = p. Apart from
being onlyGraphX-specific, this approachmisses the concept
of properties and also does not cover RDF graph schema.

Nguyen et al. [28] propose the LDM-3N (labeled directed
multigraph - three nodes) graph model. This data model rep-
resents each triple element as separate nodes, thus the three
nodes (3N). The LDM-3N graph model is used to address the
Singleton Property (SP) [29] based on reified RDF data. The

problem with this approach is that: (i) it adds adds an extra
computation step (and 2n triples); (ii) does not cover RDF
graph Schema; and misses the concept of properties.

Tomaszuk [39] proposes YARS serialization for transform-
ing RDF data into PGs. This approach performs only a syn-
tactic transformation between encoding schemes and does not
cover RDF Schema.

Brandizi et al. [10] propose rdf2neo, a tool that can be
used to map any RDF schema to the desired PG schema. This
hybrid architecture facilitates access to knowledge networks
based on shared data models. However, the disadvantage of
this solution is that it maintains amore complex infrastructure
that works well in the paper use case, but not for more general
applications.

Another approach is presented in [16]. In this paper,
the author presents a proposal for converting an RDF data
store to a graph database by exploiting the ontology and the
constraints of the source.

B. FROM PROPERTY GRAPHS TO RDF
There exist very few proposals for the PG-to-RDF transfor-
mation, such as Das et al. [15] andHartig and Thompson [20],
that mainly use RDF reification methods (including Blank
Nodes) to convert nodes and edge properties in a PG to RDF
data. While [20] propose an in-direct mapping that requires
converting to the RDF? model (as mentioned earlier), [15]
lacks a formal foundation. Both approaches do not consider
the presence of a PG schema.

Another approach is UnifiedRelational Storage (URS) [43].
It focuses on interchangeably managing RDF and PGs, and
this is not a strict transformation method.

Barrasa [7] proposes NSMNTX, a plugin that enables
the use of RDF in Neo4j. This plugin allows the import
and export of both schema and data. The problem with
this approach is that NSMNTX is not formally defined and
the mappings do not satisfy the property of information
preservation.

Table 9, presents a summary of the related work and the
features they address. It should bementioned that someworks
have studied the problem of mapping RDF to PGs in the
scope of specific use cases, e.g. disease networks [25], protein
structure exploration [1], and Wikidata reification [21].

86108 VOLUME 8, 2020

R. Angles et al.: Mapping RDF Databases to Property Graph Databases

VIII. CONCLUSIONS
In this article, we have proposed a novel approach, which
consists of three directmappings, to transformRDF databases
into PG databases.We demonstrate, empirically and formally,
that themappings have an efficient implementation to process
large datasets.

We showed that two of the proposed mappings satisfy the
property of information preservation, i.e. there exist inverse
mappings that allow recovering the original databases with-
out losing information. These results allow us to present the
following conclusion about the information capacity of the
PG data model with respect to the RDF data model.
Corollary 1: The property graph data model subsumes the

information capacity of the RDF data model.
Although our methods assume some condition for the input

RDF databases, they are generic and can be easily extended
(by overloading the mapping functions) to provide support
for features such as inheritance and reification. Furthermore,
our formal definitions will be very useful to study query
interoperability [36], [38] and query preservation between
RDF and PG databases (i.e. transformations among SPARQL
and PG query languages). Thus, with this paper, we take
a substantial step by laying the core formal foundation for
supporting interoperability between RDF and PG databases.

Among the limitations of the mappings presented in this
paper we can mention: the simple mapping is not suitable
for RDF datasets with complex vocabularies as the common
names will be merged in the resulting property graph; the
generic mapping works with any RDF dataset, but the size
of the output property graph will be bigger than the other
two mappings; the complete mapping is suitable for any RDF
dataset, but in practice, it requires the special directory to
map prefixes to namespaces. A general limitation of the three
mappings is that they are not able to deal with the special
semantics defined by the RDF model (e.g. reification) and
the inference rules supported by RDF Schema (e.g. sub-
class, sub-property). We plan to study these features in the
future.

REFERENCES
[1] D. Alocci, J. Mariethoz, O. Horlacher, J. T. Bolleman, M. P. Campbell, and

F. Lisacek, ‘‘Property graph vs RDF triple store: A comparison on glycan
substructure search,’’ PLoS ONE, vol. 10, no. 12, 2015, Art. no. e0144578.

[2] R. Angles, ‘‘The property graph databasemodel,’’ inProc. AlbertoMendel-
zon Int. Workshop Found. Data Manage. (AMW), vol. 2100, 2018.

[3] R. Angles, P. Boncz, J. Larriba-Pey, I. Fundulaki, T. Neumann, O. Erling,
P. Neubauer, N. Martinez-Bazan, V. Kotsev, and I. Toma, ‘‘The linked
data benchmark council: A graph and RDF industry benchmarking effort,’’
ACM SIGMOD Rec., vol. 43, no. 1, pp. 27–31, May 2014.

[4] R. Angles and C. Gutierrez, ‘‘An introduction to graph data management,’’
in Graph Data Management: Fundamental Issues and Recent Develop-
ments. Cham, Switzerland: Springer, 2018, pp. 1–32.

[5] R. Angles, H. Thakkar, and D. Tomaszuk, ‘‘RDF and property graphs inter-
operability: Status and issues,’’ in Proc. Alberto Mendelzon Int. Workshop
Found. Data Manage. (AMW), vol. 2369, 2019, pp. 1–11.

[6] R. Angles, H. Thakkar, and D. Tomaszuk. (Mar. 2020). rdf2pg
Experimental Datasets. [Online]. Available: https://doi.org/10.6084/
m9.figshare.12021156.v5

[7] J. Barrasa. NSMNTX—Neo4J RDF & Semantics Toolkit. Accessed:
Mar. 27, 2020. [Online]. Available: https://neo4j.com/labs/nsmtx-rdf/

[8] D. Beckett, T. Berners-Lee, E. Prud’hommeaux, and G. Carothers. RDF
1.1 Turtle, Terse RDF Triple Language, W3C Recommendation. [Online].
Available: https://www.w3.org/TR/turtle/

[9] V. P. Biron, M. Sperberg-McQueen, S. Gao, A. Malhotra, H. Thompson,
and D. Peterson. (Apr. 5, 2012). XML Schema Definition Language
(XSD) 1.1 Part 2: Datatypes, W3C Recommendation. [Online]. Available:
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/

[10] M. Brandizi, A. Singh, and K. Hassani-Pak, ‘‘Getting the best of linked
data and property graphs: rdf2neo and the KnetMiner use case,’’ in
Proc. Semantic Web Appl. Tools Health Care Life Sci. (SWAT4LS), 2018,
pp. 1–11.

[11] D. Brickley and R. V. Guha. (Feb. 25, 2014). RDF Schema 1.1, W3C Rec-
ommendation. [Online]. Available: https://www.w3.org/TR/rdf-schema/

[12] G. Carothers. Notation3 (N3): A Readable RDF Syntax, W3C
Team Submission. Accessed: Mar. 28, 2011. [Online]. Available:
https://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/

[13] G. Carothers. (Feb. 25, 2014). RDF 1.1 N-Quads, A Line-Based Syn-
tax for RDF Datasets, W3C Recommendation. [Online]. Available:
https://www.w3.org/TR/2014/REC-n-quads-20140225/

[14] G. Carothers. (Feb. 25, 2014). RDF 1.1 N-Triples, A Line-Based Syn-
tax for an RDF Graph, W3C Recommendation. [Online]. Available:
https://www.w3.org/TR/2014/REC-n-triples-20140225/

[15] S. Das, J. Srinivasan, M. Perry, E. I. Chong, and J. Banerjee, ‘‘A tale of two
graphs: Property graphs as RDF in oracle,’’ in Proc. Int. Conf. Extending
Database Technol. (EDBT), 2014.

[16] R. D. Virgilio, ‘‘Smart RDF data storage in graph databases,’’ in Proc. 17th
IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGRID), May 2017,
pp. 872–881.

[17] F. Gandon and G. Schreiber. (Feb. 25, 2014). RDF 1.1 XML Syntax, W3C
Recommendation. [Online]. Available: https://www.w3.org/TR/2014/
REC-rdf-syntax-grammar-20140225/

[18] W3C OWL Working Group. (Dec. 11, 2012). OWL 2 Web Ontology
Language Document Overview (Second Edition), W3C Recommendation.
[Online]. Available: https://www.w3.org/TR/2012/REC-owl2-overview-
20121211/

[19] S. Harris and A. Seaborne. (Mar. 21, 2013). SPARQL 1.1
Query Language, W3C Recommendation. [Online]. Available:
http://www.w3.org/TR/sparql11-query/

[20] O. Hartig and B. Thompson, ‘‘Foundations of an alternative approach
to reification in RDF,’’ 2014, arXiv:1406.3399. [Online]. Available:
http://arxiv.org/abs/1406.3399

[21] D. Hernández, A. Hogan, C. Riveros, C. Rojas, and E. Zerega, ‘‘Querying
wikidata: Comparing SPARQL, relational and graph databases,’’ in Proc.
Int. Semantic Web Conf. (ISWC). Cham, Switzerland: Springer, 2016.

[22] R. Hull, ‘‘Relative information capacity of simple relational database
schemata,’’ SIAM J. Comput., vol. 15, no. 3, pp. 856–886, Aug. 1986.

[23] Information Technology—Database Languages GQL, Standard ISO/IEC
JTC 1/SC 32 Data Management and Interchange, 2019. [Online]. Avail-
able: https://www.iso.org/standard/76120.html

[24] G. Klyne and J. Carroll. (Feb. 25, 2014). RDF 1.1 Concepts
and Abstract Syntax, W3C Recommendation. [Online]. Available:
http://www.w3.org/TR/rdf11-concepts/

[25] A. Lysenko, I. A. Roznovăţ, M. Saqi, A. Mazein, C. J. Rawlings, and
C. Auffray, ‘‘Representing and querying disease networks using graph
databases,’’ BioData Mining, vol. 9, no. 1, p. 23, Dec. 2016.

[26] M. N. Mami, D. Graux, H. Thakkar, S. Scerri, S. Auer, and J. Lehmann,
‘‘The query translation landscape: A survey,’’ CoRR, no. 1910.03118,
pp. 1–25, Oct. 2019.

[27] A. M. Martínez-Prieto, D. J. Fernández, A. Hernández-Illera, and
C. Gutiérrez, ‘‘RDF compression,’’ in Encyclopedia of Big Data Technolo-
gies. Cham, Switzerland: Springer, 2018, pp. 1–11.

[28] V. Nguyen, J. Leeka, O. Bodenreider, and A. Sheth, ‘‘A formal graphmodel
for RDF and its implementation,’’ 2016, arXiv:1606.00480. [Online].
Available: http://arxiv.org/abs/1606.00480

[29] V. Nguyen, H. Y. Yip, H. Thakkar, Q. Li, E. Bolton, and O. Bodenreider,
‘‘Singleton property graph: Adding a semantic Web abstraction layer
to graph databases,’’ in Proc. Workshop Contextualised Knowl. Graphs
(CKG) (ISWC), 2019, pp. 1–13.

[30] C. Parent and S. Spaccapietra, ‘‘Database integration: The key to data inter-
operability,’’ in Advances in Object-Oriented Data Modeling. Cambridge,
MA, USA: MIT Press, 2000, pp. 221–253.

[31] M. Pham and A. P. Boncz, ‘‘Exploiting emergent schemas to make RDF
systems more efficient,’’ in Proc. Int. Semantic Web Conf. (ISWC) Cham,
Switzerland: Springer, 2016, pp. 463–479.

VOLUME 8, 2020 86109

R. Angles et al.: Mapping RDF Databases to Property Graph Databases

[32] S. Ceri, L. Tanca, and R. Zicari, ‘‘Supporting interoperability between new
database languages,’’ in Proc. Adv. Comput. Technol., Reliable Syst. Appl.,
1991, pp. 273–281.

[33] A. Schätzle, M. Przyjaciel-Zablocki, T. Berberich, and G. Lausen, ‘‘S2X:
Graph-parallel querying of RDF with GraphX,’’ in Biomedical Data Man-
agement and Graph Online Querying. Cham, Switzerland: Springer, 2015.

[34] F. J. Sequeda, M. Arenas, and P. D. Miranker, ‘‘On directly mapping
relational databases to RDF and OWL,’’ in Proc. Int. Conf. World Wide
Web (WWW), Apr. 2012, pp. 649–658.

[35] IEEE Standard Computer Dictionary: A Compilation of IEEE Standard
Computer Glossaries, IEEE Standard 610, Jan. 1991.

[36] H. Thakkar, R. Angles, M. Rodriguez, S. Mallette, and J. Lehmann, ‘‘Let’s
build bridges, not walls: SPARQL querying of TinkerPop graph databases
with Sparql-Gremlin,’’ in Proc. IEEE 14th Int. Conf. Semantic Comput.
(ICSC), Feb. 2020, pp. 408–415.

[37] H. Thakkar, Y. Keswani, M. Dubey, J. Lehmann, and S. Auer, ‘‘Trying
not to die benchmarking: Orchestrating RDF and graph data management
solution benchmarks using LITMUS,’’ in Proc. SEMANTICS Conf., 2017,
pp. 120–127.

[38] H. Thakkar, D. Punjani, J. Lehmann, and S. Auer, ‘‘Two for one: Querying
property graph databases using SPARQL via Gremlinator,’’ in Proc. Joint
Workshop Graph Data Manage. Exper. Syst. Netw. Data Analytics, 2018,
pp. 1–5.

[39] D. Tomaszuk, ‘‘RDF data in property graph model,’’ in Proc. Res. Conf.
Metadata Semantics Res. (MTSR). Cham, Switzerland: Springer, 2016.

[40] D. Tomaszuk, R. Angles, L. Szeremeta, K. Litman, and D. Cisterna,
‘‘Serialization for property graphs,’’ in Proc. Int. Conf. Beyond Databases,
Archit. Struct., 2019.

[41] D. Tomaszuk and D. Hyland-Wood, ‘‘RDF 1.1: Knowledge representation
and data integration language for theWeb,’’ Symmetry, vol. 12, no. 1, p. 84,
2020.

[42] D. Tomaszuk and K. Litman, ‘‘DRPD: Architecture for intelligent interac-
tion with RDF prefixes,’’ in Proc. Workshop Decentralizing Semantic Web
(ISWC), 2018, pp. 1–8.

[43] R. Zhang, P. Liu, X. Guo, S. Li, and X.Wang, ‘‘A unified relational storage
scheme for RDF and property graphs,’’ in Proc. Int. Conf. Web Inf. Syst.
Appl. Cham, Switzerland: Springer, 2019, pp. 418–429.

RENZO ANGLES received the bachelor’s degree
in systems engineering from the Universidad
Católica de Santa María, Arequipa, Peru, and the
Ph.D. degree in computer science from the Univer-
sidad de Chile, in 2009.

In 2013, he carried out Postdoctoral Research
at the Department of Computer Science, VU Uni-
versity Amsterdam, as part of his participation in
the Linked Data Benchmark Council Project. He is
currently an Assistant Professor with the Depart-

ment of Computer Science, Universidad de Talca, Chile. He participates as
a Researcher at the Millennium Institute for Foundational Research on Data,
Chile. His research interests lie in the intersection of graph databases and
the Semantic Web. Specifically, he works in the theory and design of graph
query languages and the interoperability between RDF and graph databases.

HARSH THAKKAR received the B.Eng. degree
in computer engineering from the L. D. College
of Engineering, Ahmedabad, India, in 2011, and
the M.Tech. degree in computer science from NIT
Surat, Surat, India, in 2013. He is currently pursu-
ing the Ph.D. degree with the University of Bonn,
Germany.

He is a Marie Skłodowska-Curie Alumni with
the University of Bonn. He also works as a Subject
Matter Expert Consultant with OSTHUS GmbH,

Aachen, Germany. He applies semantic technologies in the interdisciplinary
field of life sciences for solving real-world data-centric problems. His
research interests include graph and RDF data management, benchmarking,
graph query languages, and question answering.

DOMINIK TOMASZUK received the M.Sc.
degree in computer science from the Bialystok
University of Technology, Poland, in 2008, and
the Ph.D. degree in computer science from
the Warsaw University of Technology, Poland,
in 2014. He is currently a Researcher with the
Institute of Informatics, University of Białystok,
Poland. His current researches focus on Semantic
Web, RDF, property graphs, NoSQL databases,
and cheminformatics.

86110 VOLUME 8, 2020

