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ABSTRACT The quick and intelligent requests and answers in artificial intelligence (AI) are inseparable
from intelligent data. Knowledge graph makes data more intelligent by establishing association among data,
which provides convenience for intelligent search, reasoning and analysis of data. Resource Description
Framework (RDF) is an effective data representation model of knowledge graph. This paper takes RDF as
the research object and proposes an incremental partition method of intelligent data (IPID) to realize the
distributed storage of large-scale AI data. First, IPID gives a mixed object function integrating edge cut
and load balancing. Second, IPID devises the initial and incremental partitioning algorithms of RDF. The
initial partition divides the original RDF graph into kernel vertices, boundary vertices and free vertices. The
boundary and freedom nodes select the kernel vertex with the maximum gain of object function to form a
sub-partition. And the incremental partition is in charge of the selection of sub-partition of new and deleted
data by the object function. Meanwhile, the incremental partition algorithm would also execute a dynamic
adjustment strategy at a certain time interval according to the balance and tightness of sub-partition to satisfy
the partitioning object. Finally, IPID is tested on the knowledge graph datasets. The experimental results show
that the object function guarantees the quality of knowledge graph partition in edge cut and load balancing,
and effectively realizes the incremental partition.

INDEX TERMS Artificial intelligence, knowledge graph, RDF, incremental partition, dynamic adjustment.

I. INTRODUCTION
At present, the society has entered the era of artificial intel-
ligence (AI). The development of AI has given birth to
a large number of intelligent applications. Such as intelli-
gent transportation, researchers around the world have been
working on new automotive applications to create a com-
fortable and safer driving environment [1], [2]. However,
these works are inseparable from the intelligent retrieval and
reasoning. The intelligent retrieval and reasoning are based
on intelligent Data. Knowledge graph effectively reflects
the intelligence of data by establishing the fragmented data
association [3].

RDF (resource description framework) is an effective
data representation model of knowledge graph, which is
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recommended byW3C to describe the data resource and their
relationships [4]. RDF uses (subject, predicate, object) to
describe a characteristic of resource. Meanwhile, the subject
and object are considered as two vertices, and the predicate
is regarded as the directed edge from the subject to object.
So a large number of triples form a directed graph, namely
knowledge graph [5], [6].

With the rapid development of various intelligent fields,
the scale of knowledge graph increases exponentially [7].
In the face of large-scale knowledge graph, the single
machine can not meet the demand of data storage [8]. Dis-
tributed storage is an effective solution to large-scale data
storage. Nevertheless, the premise of distributed storage is
how to partition data effectively.

At present, most of the researches are focused on the static
knowledge graph partitioning. This is because some domain
knowledge graphs update slowly. But there are also some
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areas, such as intelligent transportation system. Because of
the continuous update of roads, vehicles and other informa-
tion, the knowledge graph is constantly changing, which puts
forward a new challenge to data partition [9]. That is how to
reasonably adjust the change data and meet the partitioning
objects of edge cut and load balancing.

Based on above all, this paper proposes an incremental
partitioning method of intelligent data (IPID) to realize the
distributed storage of large-scale knowledge graph. The con-
tributions are summarized as follows:
(1) A mixed object function combining the minimum edge

cut and the load balancing is designed in IPID.
(2) Based on this object function, an original knowledge

graph partitioning algorithm is proposed in IPID. The
algorithm divides the original RDF graph into kernel
vertices, boundary vertices and freedom vertices. And
then the boundary and freedom vertices select the ker-
nel vertices with the maximum gain of object function
to form a partitioning subgraph.

(3) For the change data, an incremental partitioning algo-
rithm is devised. The algorithm realizes the partition
selection of changed data by the object function. Mean-
while, a dynamic adjustment strategy is executed in
IPID at a certain time interval to satisfy the partitioning
object.

(4) The standard knowledge graph datasets are selected to
verify the effectiveness of the algorithm. The experi-
mental results show that the object function guarantees
the partition quality of knowledge graph in edge cut and
load balancing, and effectively realizes the incremental
partition.

The other parts of the paper are summarized as follows:
the second part introduces the related work; the third part
describes the design of mixed object function, the fourth and
fifth parts describe the initial and incremental graph parti-
tioning algorithms under the mixed object function. Finally,
the experimental results verify the IPID algorithm’s ability
and draw the conclusion.

II. RELATED WORK
RDF graph model developed in the semantic web domain
can well reflect the data relationship in knowledge graph.
With the increase of data scale, the single machine mode can
not meet the demand of data storage. Distributed storage is
an effective solution to large-scale data storage. Because the
nature of graph makes a large number of associations among
data, so the premise of distributed storage is how to improve
the internal data association and reduce the relationship of
computing nodes.

SPA [10] adopts the vertex blocks to partition RDF graph.
VB-Partitioner [11] extends the vertex block by N hops to
avoid the query communications among computing nodes.
Aiming at the asymmetric relationship between vertices and
the power characteristics of RDF graph, BRGP proposes a
modularity-based label propagation algorithm for the rough
partition of RDF graph. Wu et al. [12] propose a path

partition algorithm, which decomposes RDF graph into many
paths from source to sink, and then divides it by path.
Huang et al directly apply METIS framework for RDF graph
partition, and reduce the communication of computing nodes
in SPARQL query by replica method [13]. Wang et al. use
the label propagation algorithm to coarse RDF graph vertices,
and combine METIS to partition the rough graph [14]. All of
these algorithms are based on static RDF graph and do not
give solutions to the dynamic graph.

Zhu et al. propose an incremental clustering algorithm
based on density which can realize the incremental partition
of the graph, but the algorithm mainly tends to find the prob-
lem of overlapping communities in social networks, and does
not consider the edge cut and load balancing [15]. Fennel is a
flow-based graph partition framework, which combines some
heuristic algorithms to achieve graph partition under the con-
straint of object function. Spinner proposed by Martella [16]
is an incremental graph partitioning algorithm which extends
the label propagation algorithm into a distributed graph parti-
tioning algorithm based on the Pregel to ensure the scalability
of the algorithm. Spinner can automatically adjust the result
of graph partition according to the changes of the graph
and computing environment to avoiding the repartition [17].
In addition, Spinner allows the global vertices to participate
in the optimal calculation by restarting the iteration when
dealing with incremental nodes. Although a very good result
is obtained, but this way is very time-consuming. SPAR [18]
divides the relevant information of social user into a storage
node to ensure the partition of local semantic integrity while
minimizing the copy. In addition, SPAR designs an adaptive
segmentation strategy for the change of nodes, edges and stor-
age nodes. Lv et al. design a dynamic partition method which
gathers the high locality vertices and get a processing order
by a priority-based scheduling algorithm [19]. LogGP [20]
records, analyzes and reuses the historical statistical infor-
mation to generate a hyper-graph. And then LogGP uses a
novel hyper-graph streaming partitioning approach to refine
the partitioning result. During the partitioning process, the
LogGP evaluates the running time of each node according to
the runtime statistics, and dynamically adjusts the subsequent
execution.

III. MIXED OBJECT FUNCTION OF EDGE CUT AND LOAD
BANLANCING
Given an RDF graph G = (V , E), in which V and E are
the set of vertices and edges, respectively. The |V | = n and
|E| = m represent the number of vertices and edges. A k-way
partition is to divide the RDF graph into k disjoint subgraphs
P = {G1,G2,. . . , Gk}, where Gi = {Vi, Ei}, i = 1,2,. . . , k.
For any i 6= j, Vi ∩ Vj = ϕ and

∑k
i=1 Vi = V .

Edge cut and loading balance are two important indexes to
measure the quality of graph partitioning. Edge cut refer to the
connecting edges across different subgraphs. The fewer edge
cuts are, the fewer connections among subgraphs are, which
also means less communication among storage nodes and
high cohesion of data. The edge cuts between the subgraphs
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Gi and Gj can be computed as follows:

inter
(
Gi,Gj

)
=

∑
a∈Vi,b∈Vj

e (a, b) , i 6= j (1)

If the vertices a and b from two different subgraphs have an
edge, then e(a, b) = 1, otherwise e(a, b) = 0. Corresponding
to the edge cut, the edges inside any subgraph are defined as
the inner cut which is described as follows:

intra(Gi) =
∑

a,b∈Vi
e(a, b) (2)

Obviously, the higher the inner cut is, the closer the rela-
tionship is. That is to say the subgraph has a stronger inde-
pendence.

The load balancing means that the number of vertices in
each subgraph tends to be equal. Under the same hardware
environment, the parallel execution efficiency is much higher
if the vertex size of each subgraph tends to be equal. When
the number of vertices in any subgraph Gi satisfies Eq. (3),
the set of subgraphs P tends to be balanced. Among them, e
is a floating factor between 0 and 1, which allows the graph
size to float in a certain range.

dn(1− e)/ke ≤ |Vi| ≤ dn(1+ e)/ke (3)

From the above analysis, graph partitioning not only min-
imizes the edge cut, but also ensures the load balancing.
So this paper builds a mixed object function f (P) based on
the edge cut and load balancing which satisfies the following
requirements:

f (P) = cut(P)+ balance(P) (4)

where cut(P) represents the edge cuts, for a k-way graph
partitioning it satisfies Eq. (5):

cut(P) =
∑k

i=1

∑k

j>i
inter(Gi,Gj) (5)

balance(P) represents the load balancing, it satisfies
Eq. (6):

balance(P) =
∑k

i=1
σ (Gi) (6)

where

σ (Gi) = (|Vi| −
⌈n
k

⌉
)
2

(7)

Obviously, When the scale of the the subgraph is close to⌈ n
k

⌉
, the value of σ (Gi) is the smallest.

When the function f (P) takes the minimum value,
the graph partitioning result is the best. However, graph
partitioning is a NP-complete problem, so it is difficult to
obtain accurate partitioning results. So our goal is to find an
approximate optimal solution. To achieve this goal, f (P) is
treated as follows:

Given a function g(P) as Eq. (8):

g(P) =
∑k

i=1
intra(Gi)− balance(P) (8)

where
∑k

i=1 intra(Gi) satisfies:∑k

i=1
intra(Gi) = m− cut(P) (9)

FIGURE 1. Calculation of the maximum gain value.

then from Eqs. (4, 8, 9):

g(P) = m− f (P) (10)

If we find the minimum value of f (P), it is equivalent to
finding the maximum value of g(P). Therefore, the partition
of v can be determined by calculating the maximum gain of
1g(P, i, v).

In Fig.1, let n/k = 4, the current g(P) values of two
partitioning subgraphs G1 and G2 are both 7. When the new
node i is added to G1 and G2, respectively, the values of
g(P) are 7 and 8, and the gain values are 1g (P,G1, i) =
1 1g (P,G2, i) = 0. So we select theG2. It can also be seen
intuitively from Fig.1 that the edge cut produced by adding
I to G2 is smaller than that of G1, and the change of load
balancing is consistent.

IV. INITIAL GRAPH PARTITIONING
In this section, an improved k-way Greedy Graph Growing
Partitioning (IKGGGP) [21] based on mixed object function
is proposed to partition the original RDF graph. IKGGGP
first divides the graph vertices into kernel vertices belong-
ing to only one sub-partition, boundary vertices existing in
multiple sub-partitions and free vertices not belonging to
any partitions. Fig.2 describes the three types of vertices,
in which all the connections of red kernel vertices located in
partitionA, while the connections of purple boundary vertices
belong to multiple partitions, and the blue free vertices do not
belong any partitions. So for the boundary and free vertices,
IKGGGP needs to choose a suitable partition by calculating
the maximum gain of g(P).

A. SELECTION OF KERNEL VERTEX
SPARQL query is a subgraph matching problem in essence.
So if the closely related vertices locate in the same storage
node, the communication will be greatly reduced. When a
vertex is very similar to its neighbors, it is easier for it to
become a kernel vertex.

Giver an RDF graph, 0(v) is the neighbor set of v. 0ε(v)
represents a set of vertices whose similarity with v is greater
or equal to the threshold value ε. If the number of |0ε(v)|
exceeds the threshold δ, then the vertex v is a kernel vertex.
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FIGURE 2. Division of initial graph vertices.

Searching for the kernel vertex needs to compute the simi-
larity between vertex and its neighbors. The traditional meth-
ods for calculating the similarity are based on the structure
information of vertices, such as random walk [22], common
neighbor [23], and so on. Because of the semantic feature of
knowledge graph, there are some semantic relations among
nodes. If the vertices with close semantic association are
divided into the same partition, it will be more conducive
to the parallel query. Therefore, IKGGGP devises a vertex
similarity measure method based on semantics.

We know that RDF graph uses Uniform Resource Iden-
tifier (URI) to identify vertices and edges. URI reflects the
information of vertex class and superclass through directory
structure. If two vertices have more common superclass, they
have greater similarities. So we use sup(v) to calculate the
superclass of vertex v. The semantic similarity between u and
v is measured as follows:

similarity (u, v) =
|sup(u)∩sup(v)|
|sup(u)∪sup(v)|

(11)

When the kernel vertices are determined, we can divide the
graph initially. Algorithm1 gives the pseudo code of the initial
partition.

B. DISTRIBUTION OF BOUNDARY AND FREE VERTICES
After the kernel vertices have been determined, there are
another two types of vertices, namely the boundary vertices
and free vertices. These two kinds of vertices need to calculate
the maximum gain value g(P) to select the partition. It can be
described as follows:

partition(v) = argmax1g(P, v, i), i = 1, 2, . . . , k (12)

The execution steps of vertex allocation in IKGGGP algo-
rithm are as follows:
Step 1: Calculate the gain value1g of all the vertices to be

allocated to each partition;
Step 2: Select the vertex v that produces themaximumgain,

assign it to partition iwith maximum gain, and remove v from
the vertex set to be allocated;
Step 3: If the vertex set to be allocated is not empty, update

the gain value of the remaining vertices, return to step 1,
otherwise, go to step 4;
Step 4: Output the results of partition.

Algorithm 1 Initial Partition
Input: the core set of vertex core, graph G
Output: initial partition P = {G1, G2,. . . , Gk}
Method:

Initial queue(q); p < −1;
Do while p <= k
v <–select(core);
remove(core, v);
inqueue(q, v);
i< −1;
partition(v) < −p;
number(v) < −i;
i < − i+ 1; Gp = Gp

⋃
v;

Do while not isempty(q) and i < n/k
v <–outqueue(q);
for each u in 0ε(v)
if u ∈ core

remove (core, u);
if u /∈ Gp

inqueue (q, u);
partition (u) < −p;
number (u) < −i;

if i = n/k
exit for

i < −i+ 1; Gp = Gp
⋃
u;

end for
end do
p = p+1;
clearqueue(q);

end do

In order to improve the efficiency, IKGGGP gives
an improve strategy. Firstly, the algorithm uses a two-
dimensional array to store the gain value1g. Each row of the
array corresponds to a vertex, and each column corresponds
to a partition. When the vertex v is assigned to the partition
i, the gain variation of other vertices w in each partition as
follows:0 (v)− 0i (v)+ 2

(n
k
− 1− |vi|

)
w ∈ 0 (v) not in Gi

0 (v)− 0i (v)+
2n
k
− 1− 2 |vi| , others

(13)

Secondly, in order to easily find the vertex that produces the
maximum gain, IKGGGP uses an adjacency list to record the
corresponding information of maximum gain value of each
vertex. Each array element is a value in the maximum gain
range and sorted in descending order. At the same time, each
element points to a two-way linked list to store the vertex
information that produces the same maximum gain value.

V. INCREMENTAL GRAPH PARTITIONING
In some application areas, knowledge graph is constantly
changing, so the corresponding graph partition algorithm
should also give reasonable solutions to these changes to
ensure that the data partition always meets the requirements

VOLUME 8, 2020 63437



Y. Leng et al.: AI Knowledge Graph for Dynamic Networks: Incremental Partition Algorithm

the objects of distributed storage. In view of the dynamic
change of RDF graph, this paper designs an incremental
partition and adjustment strategy of RDF graph.

A. INSERT TRIPLES
There are three cases of inserting the new triples. First, the
subject and object both exist in the original graph. Second,
there is only one subject or object in the original graph. And
the third, both of the subject and object are non-existent.

For a new triple, if the subject and object already exist in the
partition, inserting a triple is to add a new relationship. If s,
o ∈ Vi, adding a triple does not change the target function,
so you can insert the triple directly. If s ∈ Vi, o ∈ Vj, and
i 6= j, it is necessary to judge the following conditions and
select the case with the maximum gain value to add.

Without moving any vertex and adding an edge directly
between s and o, the gain value 1g is − 1.
Under the premise of ensuring the load balancing of graph

partition, the vertex s or o is migrated to the other partition,
the gain value 1g changes as shown in Eq. (14).{
|0j (s) |−|0i (s) | + 2

(
|Vi|−|Vj|−1

)
, s, o ∈ Vj

|0i (o) |−
∣∣0j (o)∣∣+ 2

(∣∣Vj∣∣−|Vi|−1) , s, o ∈ Vi
(14)

Assume the existing vertex s in the partition Vi, and the
new added vertex is o, then vertex o has two options. One is
the partition i, the other is the left partitions. The gain value is
shown in Eq. (15). Similarly, the partition with the maximum
gain value is selected on the premise of load balancing.

2n
k
− 1− 2|vi|, s, o ∈ Vi

2(
n
k
− 1− |vj|), j 6= i s ∈ Vi, o ∈ Vj

(15)

If the subject and object of a triple do not exist, then they
have nothing associations with the vertices of graph. The
strategy is to allocate the triple to the partition with the least
vertices.

B. DELETE TRIPLES
Deleting a triple is to delete a directed edge from s to o.
if |0(s)| > 1 and |0(o)| > 1, and s and o belong to different
partitions, then the deletion of edge can reduce the overall
edge cut without affecting the load balancing, so delete the
edge directly.

If |0(s)| = 1 or |0(o)| = 1, then the vertex with one
neighbor needs to be deleted together. The reduction of edge
cut will improve the partition quality, but the deletion of
vertices may lead to the load imbalance. Meanwhile, the
deletion of triples only adjusts the allocation of nodes locally,
the graph partition may appear locally optimal after a time
interval. In order to avoid the above situation, after each T
time period the graph will be dynamically adjusted.

Because of the deletion of triples, the partition of subgraphs
will be unbalanced. If the subgraph Gi does not meet the
requirements of load balancing, it needs to be adjusted.

According to Eq. (3), there are two cases that do not satisfy
the load balancing.

First, the set of vertices of the subgraph satisfies |Vi| <
dn(1−e)/ke. For this case, assuming the neighborhood vertex
set of the subgraph Gi is 0(Vi), ∀v∈ 0(Vi), P(v) = j. Moving
vertex v from the partition j to the partition i, the gain value
of the object function is as follows:

1g = 0j (v)− 0i (v)+2(
∣∣Vj∣∣− |Vi| −1) (16)

Select the vertex v from 0(Vi) which can get the the max-
imum gain value and move it to the partition Gi until |Vi|
satisfies the Eq. (3).

For another case, the set of vertices of the subgraph Gi
satisfies |Vi| > dn(1 + e)/ke. We use η(Vi) to represent
the set of vertices associated with other subgraphs in the
subgraph Gi. Then ∀v ∈ η (Vi) , ∃u ∈ 0(v), P(u) = j, j 6= i,
when v is moved from partition i to j, the gain value of the
object function is:

1g = 0i (v)− 0j (v)+2( |Vi| −
∣∣Vj∣∣−1) (17)

Again, select the vertex v from 0(Vi) which can get the
maximum gain value and move it to the partition Gi until |Vi|
satisfies Eq. (3).

C. DYNAMIC ADJUSTMENT STRATEGY
When the partition meets load balancing, the inner vertices
in subgraph are closely related and the relationships between
subgraphs should be sparse. In this paper, the cohesion and
coupling of subgraphs are used to measure the compactness
of partition subgraphs. Eq. (18, 19) give the method to calcu-
late the degree of cohesion and coupling.

cohesion (Gi) =
intra(Gi)

intra (Gi)+
∑k

j=1,j6=i inter(Gi,Gj)
(18)

connection
(
Gi,Gj

)
=

inter(Gi,Gj)

intra (Gi)+
∑k

j=1,j6=i inter(Gi,Gj)
(19)

For any partition subgraph, if the cohesion degree is greater
than the coupling degree between it and other subgraphs,
it means that the internal vertices of the subgraph are closely
related. If the cohesion of a subgraph is lower than its cou-
plingwith other subgraphs, that means there are some vertices
in the subgraph, which are more closely related to other
subgraphs.

Fig. 3 gives the result of swapping the vertices b and e in the
two partition subgraphs G1 and G2. In Fig. 3, the dotted line
represents the inner cuts and the solid line is the edge cuts.
For the subgraph G1, the degree of cohesion and coupling
before exchange are 4/10 and 6/10, respectively. When the
vertices are swapped, the two values are 5/10 and 5/10,
respectively. Similarly, subgraphsG2 also changed from 5/11
and 6/11 to 5/10 and 5/10. It can be seen that the cohesion
of G1 and G2 is improved, while the coupling degree is
decreased. And the most obvious performance is the edge cut
decreased.
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FIGURE 3. Adjustment of balance.

Given η (Vi) represents the vertex set associated
with other subgraphs in Gi. ∀v ∈ η(Vi), u ∈

0j (v) , j= 1, 2 . . . ,k and j 6= i, if 0 (u) < 0 (v) and the
neighbor of u and v in the subgraphs Gi and Gj satisfies
Eq. (20), then the vertices u and v are exchanged.

0i (v)+0j (u) < 0j (v)+ 0i(u) (20)

The steps to adjust the cohesion of the subgraph are as
follows:
Step1: Calculate the degree of cohesion and cou-

pling between the partition subgraphs according to the
Eqs. (18, 19);
Step2: If there is a subgraph, which satisfies cohesion(Gi)

< connection(Gi, Gj), j = 1, 2,. . . , k , then perform step 3;
otherwise, go to step 5;
Step3: If there exist v ∈ η(Vi), u ∈ 0j (v) and 0(u) <

0 (v), and satisfy Eq. (20) at the same time, then exchange
the vertices u and v; otherwise, go to step 5;
Step4: Update the degree of cohesion and coupling

between subgraphs, then go to step 2;
Step5: Output the adjusted partition results.

VI. EXPERIMENTS
In this paper, the performance of IPID algorithm is verified
from two aspects: the initial and incremental graph partition.
The test datasets include two knowledge graphs: LUBM and
UniProt.

A. DATASETS AND SETTING
LUBM is a kind of standard synthetic dataset, which is used
to describe an ontology of college departments, classes and
professors and their relationships. UniProt is a free access
real dataset of protein sequence and function information.
Table 1 lists the basic information about these two datasets.

TABLE 1. Statistic of datasets used in experiments.

FIGURE 4. Comparison of partition time for initial partition.

The experiment environment in hardware is: Inter Xeon
2.00GHz× 24 processor, 20GB memory. The software envi-
ronment is: 64-bit Linux operating system, C++ and com-
piled using G++, with-O2 option to optimize.

B. PARTITIONING PERFORMANCE OF IKGGGP
We select the LUBM50 and UniProt1 to verify the initial
graph partition algorithm IKGGGP. The comparison algo-
rithms include METIS, MLP + METIS and BRGP. The
parameters are ε = 0.3, δ = 2m/n.
Each partition algorithm is performed three times, and

then take the average value of the result. For load balanc-
ing, we take the mean ratio of the largest subgraph and the
partition subgraph. Both algorithms divide the dataset into
three different size, namely, 4, 8 and 16. The comparison
results include three aspects: partition time, edge cut and load
balancing.

As shown in Fig. 4, the partition time of IKGGGP algo-
rithm is better than METIS, and lower than MLP + METIS
and BRGP. The execution efficiency of IKGGGP, MLP +
METIS and BRGP is not directly related to the vertex degree
distribution, so they are not affected by the high degree
vertices.

The vertex coarsening speed of METIS algorithm is
affected by vertex degrees [24], [25]. There are some central
vertices in the knowledge graph which have extensive con-
nections with other resources. So the efficiency of METIS is
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FIGURE 5. Statistics of vertex for initial partitioning.

lower than the other three algorithms. The result proves that
the general graph partition framework is not suitable for the
partition of knowledge graph.

For MLP+METIS and BRGP algorithms, the vertices are
coarsened layer by layer by using LPA algorithm. The time
complexity of LPA in each layer isO(tm), where t is the num-
ber of iterations, and m is the number of edges in each layer.
The IKGGGP algorithm needs to calculate the similarity
between the vertex and its neighborhood to find out the core
vertex, and then allocate the left nodes. The time complexity
is O(m+ n). However, the IKGGGP algorithm is lower than
MLP+METIS and BRGP in efficiency, because the IKGGGP
algorithm needs to constantly update themaximumgain value
of the vertices to be distributed.

In addition, the partition efficiency of IKGGGP algorithm
is related to the number of distributed vertices. Fig. 5 lists
the proportion of three types of vertices generated in the
initial partition. It can be seen that the number of kernel
vertices decreases with the increase of partition number, but
the total number is still more than 30%. Therefore, at least
30% vertices do not participate in the redistribution. It is also
a reason why the time efficiency of IKGGGP algorithm is
higher than METIS.

MLP and BRGP both select LPA as their coarsening
method. BRGP uses modularity to replace the select scheme
of MLP based on common neighborhoods, which improves
the quality of coarsened graph. Compared with LPA for
indirect selection edge cut and load balancing optimization,
the gain function introduced of IKGGGP algorithm directly
selects the optimal condition of edge cut and load balanc-
ing for vertex distribution, so in Figs. (6, 7) the results
of IKGGGP algorithm have more advantages in several
algorithms.

C. INCREMENTAL GRAPH PARTITION
According to the dynamic change of RDF graph, the incre-
mental partition and adjustment strategy is implemented on
the result of initial partition. The experiment verifies the
performance by continuously inserting triples.

The two comparison algorithms are Spinner and Fennel.
Firstly, Lubm50 and Uniprot1 are executed on IKGGGP and
Spinner as initial static data, and other data are generated by
dynamic insertion. Fennel directly increases the data in the
way of flow. The final data volume of the three algorithms

FIGURE 6. Comparison of edge cut for initial partition.

FIGURE 7. Comparison of load balancing for initial partition.

reach Lubm2000 and UniProt2 datasets. The dynamic adjust-
ment interval of IPID is set to T = 5S.
Fig. 8 shows the three algorithms’ experimental results in

partition time, edge cut and load balancing. Because Fennel
algorithm adopts flow partition and the time efficiency is lin-
ear, so it has the highest partition efficiency on both datasets.
The partition efficiency of Spinner is lower than that of Fennel
and IPID. The reason lies that Spinner restarts iteration to find
the optimal partition each time, so the efficiency will grad-
ually decrease with the increase of the number of vertices.
Although IKGGGP algorithm used by IPID in original graph
partition is not efficient, but in incremental graph, because
IPID adopts linear allocation scheme and vertex adjustment
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FIGURE 8. Performance verification of incremental partitioning algorithm.

FIGURE 9. The influence of dynamic adjustment on the load balancing of
graph.

is also based on local subgraph, so its efficiency is between
Spinner and Fennel.

In the experimental results of edge cut and load balancing,
IPID is better than the other two algorithms. Although Fennel
algorithm is also based on edge cut and load balancing object
function, but IPID adds dynamic adjustment function, so the
whole partition does not fall into the local optimum. The
load balancing of Spinner is based on edge. In this paper,
the balance is mainly based on nodes, so the balance of
Spinner is lower than that of IPID and Fennel.

In order to verify the validity of triple deletion and dynamic
adjustment, we use a random way to delete some triples from
the partition graph every interval T . Fig. 9 shows the change
of load balancing before and after dynamic adjustment on

FIGURE 10. Incremental partitioning efficiency of IPID.

UniProt dataset. It can be seen that the reduction of graph
vertices leads to the increase of the imbalance degree of the
largest subgraph. When IPID adds dynamic adjustment func-
tion, the balance will be lower than that before adjustment,
so that the balance of the whole graph partition will always
be maintained in a small range of changes.

D. PERFORMANCE OF IPID IN INCREMENTAL GRAPH
Although Fig. 4 shows that the efficiency of IKGGGP is
lower than that of MLP+METIS and BRGP. But its edge cut
and load balancing are better than the other three algorithms.

However, with the increase of data, the partition efficiency
has changed significantly. IPID uses IKGGGP as the ini-
tial partition result, and then adopt the incremental vertex
assignment and auto adjustment strategy. MLP + METIS,
METIS and BRGP adopt the way of repartition when the
new data comes. Fig. 10 shows the time performance of two
datasets which are divided into eight partitions using different
partition algorithms. Among them, IPID selects Lubm50 and
UniProt1 as the initial datasets.

The partition time of METIS, MLP+METIS and BRGP
algorithm in different size are obtained by directly applying
the algorithm to thewhole datasets. It can be seen that with the
increase of dataset size, the partition time of IPID algorithm
increases slowly, while METIS, MLP + METIS and BRGP
algorithms are obvious higher than IPID.

And the larger the dataset is, the better the IPID algorithm
is. The reason is that IPID only considers the assignment of
change vertices, so the partition speed is very fast. However,
the other three algorithms need more iterations to get the final
result when the data size changes. So IPID is effective in
incremental data partition. In addition, with the increase of
data scale, METIS algorithm can not realize data partition in
Lubm5000 dataset and the UniProt dataset up to 500 million.
Because the size of the data exceeds the memory.
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VII. CONCLUSION
Knowledge graph includes a large number of domain knowl-
edge, which can effectively reflect the relationship between
knowledge. RDF data model is one of the effective ways to
express knowledge graph. With the continuous expansion of
domain knowledge, distributed storage is an inevitable trend
for large-scale knowledge graph storage. In some fields, such
as intelligent transportation, knowledge and information are
constantly changing. In this paper, an incremental partition
algorithm is designed for the dynamic domain knowledge.
It provides an effective allocation scheme for data distributed
storage. This scheme effectively solves the problems of edge
cut and load balancing in distributed storage by defining the
mixed object function. At the same time, IPID fully considers
the semantic and structural information of knowledge graph,
so that the partition results are more conductive to intelligent
data retrieval. The experimental results also show that the
effectiveness of the object function and the efficiency of the
incremental partition and adjustment algorithm.
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